
Experience Report: Using Hackage to Inform Language Design

J. Garrett Morris
Portland State University
jgmorris@cs.pdx.edu

Abstract
Hackage, an online repository of Haskell applications and libraries,
provides a hub for programmers to both release code to and use
code from the larger Haskell community. We suggest that Hackage
can also serve as a valuable resource for language designers: by
providing a large collection of code written by different program-
mers and in different styles, it allows language designers to see not
just how features could be used theoretically, but how they are (and
are not) used in practice.

We were able to make such a use of Hackage during the design
of the class system for a new Haskell-like programming language.
In this paper, we sketch our language design problem, and how we
used Hackage to help answer it. We describe our methodology in
some detail, including both ways that it was and was not effective,
and summarize our results.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages

General Terms Experimentation, Languages

Keywords Haskell, Hackage

1. Introduction
As part of the High-Assurance Systems Programming1 project at
Portland State University, we are designing Habit, a dialect of
Haskell intended to support systems-level programming tasks with
a high level of assurance. While Habit diverges from Haskell in sev-
eral significant ways, such as being strict by default and attempting
to infer the pointedness of expressions, it also shares many Haskell
features, like the type class system. In deciding on the features of
the Habit type class system, we were eager to learn as much as pos-
sible from the Haskell community’s experience, both with the core
class system and with its more experimental aspects.

One such aspect is overlapping instances, a feature of the
Haskell class system implemented by GHC [12] and Hugs [3].
Notwithstanding the long history of overlapping instances (Gofer,
for example, first implemented overlapping instances in version
2.28, released in February 1993), there is little consensus within
the Haskell community about whether, or how, they should be sup-
ported or standardized. Indeed, while some recent work depends

1 http://hasp.cs.pdx.edu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’10, September 30, 2010, Baltimore, Maryland, USA.
Copyright © 2010 ACM 978-1-4503-0252-4/10/09. . . $10.00

on overlapping instances (such as Swierstra’s solution to the ex-
pression problem [10]), recent extensions to the class system [6, 8]
exclude overlap. This led to several questions: should Habit support
overlapping instances? If not, what kinds of programs would Habit
users be prevented from writing? Are there viable alternatives to
the use of overlapping instances?

To help answer these questions, we surveyed the frequency and
uses of overlapping instances in Hackage2, an online repository
of Haskell libraries and applications. Our survey is distinguished
from the folklore and informal input that inform any language de-
sign both by being based on a large code library and by having
an infrastructure to automate data collection. As much as possi-
ble, we reused the Hackage infrastructure to simplify the mechan-
ics of the survey. In particular, we used and extended GHC and
cabal-install [4], a tool to download and install packages (and
their dependencies) automatically from Hackage. We hoped to an-
swer the following questions:

• What proportion of the total code on Hackage uses overlapping
instances?

• In code that uses overlapping instances, how many instances
overlap each other?

• Are there common patterns among the uses of overlapping
instances?

In turn, the answers to these questions would inform the design of
the Habit class system: whether to support overlapping instances
completely, not at all, or to attempt to find a new approach that
supported the uses of overlapping instances without introducing
their complexity.

This paper proceeds as follows: The remainder of Section 1
provides background information, including an overview of type
classes, overlapping instances, and the Hackage infrastructure. As
Hackage is still under active development, some aspects of Hack-
age will have changed since we conducted our survey in April
2009. This section attempts to describe Hackage as it was then,
not as it is today; however, we will attempt to indicate those fea-
tures that we know have changed in the meantime. Section 2 de-
scribes the methodology of our survey: how we modified GHC and
cabal-install for our purposes, and how we used the modified
tools. We believe that Hackage surveys can provide valuable data
for other Haskell-related language design projects; therefore, as
much as possible, we highlight strengths and document weaknesses
in our methodology, both those that affected our survey directly and
those that might be relevant for similar projects. Section 3 summa-
rizes the results of our survey, and includes some observations on
Hackage metadata. Finally, Section 4 discusses related and future
work and concludes.

2 http://hackage.haskell.org

1.1 Background: Overlapping Instances
This section provides a summary of the overlapping instances ex-
tension; more detailed discussion is available elsewhere [5, 7].

Type classes [14] describe relations on types and provide a gen-
eral way to introduce and type overloaded functions. For example,
the Show class includes types whose values have simple textual rep-
resentations. A basic version of the Show class might be defined as
follows:

class Show t where
show :: t → String

Most primitive types, such as Int and Char, would naturally be-
long to the Show class. Moreover, if we can show the elements of a
list, then we can show the list itself by using the Haskell convention
of surrounding it with brackets and separating its elements by com-
mas. We can write an instance of Show that implements this pattern,
using the intercalate function from the Data.List library:

instance Show t ⇒ Show [t] where
show xs = [’[’] ++

intercalate "," (map show xs) ++
[’]’]

Unfortunately, this instance will produce unidiomatic output for
strings—because strings are lists of characters, the output of an
expression like show "abc" would not be the string constant "abc"
but instead the list constant [’a’, ’b’, ’c’]. We could write an
instance that would generate more idiomatic output for this case:

instance Show [Char] where
show cs = [’"’] ++ cs ++ [’"’]

However, a program that contained both the instances for Show [t]
and Show [Char] would not be valid Haskell because the compiler
could potentially resolve (i.e., choose an instance that implements)
the predicate Show [Char] with either instance. As such, these
instances would be considered overlapping.

We can formalize the notion of overlapping instances using
substitutions. Given two instances:

instance P1 ⇒ C t1
instance P2 ⇒ C t2

These instances overlap if their conclusions unify; that is, if there
are some substitutions S and T such that S t1 = T t2. The over-
lapping instances extension [7] provides a means to disambiguate
some sets of overlapping instances automatically by introducing a
notion of specificity among instances. Given the same examples,
the first instance is more specific than the second if there is a sub-
stitution S such that t1 = S t2, but no substitution T such that
T t1 = t2. When resolving a predicate, the compiler chooses the
most specific applicable instance. This extension allows the two in-
stances of Show given earlier, as the Show [Char] instance is more
specific than the Show [t] instance. However, given two instances
such as:

instance C (a, [b])
instance C ([a], b)

it does not provide a way for the compiler to resolve the predicate
C ([a], [b]) because neither instance is more specific than the
other.

The overlapping instances extension is implemented differently
by different compilers. For example, GHC checks that the instances
that apply to a predicate can be ordered by specificity when it at-
tempts to resolve the predicate. As a consequence, it would accept
a program containing the two instances for C above, but would
subsequently reject any attempt to resolve a predicate of the form

C ([a], [b]). In contrast, Hugs insists that any overlapping in-
stances must be orderable; as a result, it would reject any program
containing the two instances for C, regardless of the remainder of
the program.

1.2 Background: Hackage
Hackage is a large, online repository of Haskell libraries and ap-
plications. It organizes Haskell code into packages, each of which
consists of a collection of source files along with a metadata file
called a .cabal file. Each .cabal file contains: the name and ver-
sion of the package; the names and version ranges of the package’s
dependencies; the preferred optimization and profiling settings; the
language extensions used within the package; and, optionally, other
compiler flags specified directly. The build and dependency infor-
mation can, in turn, vary depending on the local configuration and
available libraries. The .cabal file options include ways to acti-
vate a number of standard Haskell preprocessors; however, unlike
Makefiles they cannot invoke arbitrary additional tools or further
modify the build process.

In addition to the online repository of packages, there are several
other tools in the Hackage infrastructure. Among those relevant
to this work are Cabal (the Common Architecture for Building
Applications and Libraries), which defines a library for building
packages based on their .cabal files, and cabal-install, a tool
for automatically downloading and installing packages and their
dependencies.

While Cabal supports several Haskell compilers, including
GHC, Hugs, NHC and JHC, the majority of the language exten-
sions that Cabal recognizes are only supported by GHC. Therefore,
we used GHC for our survey and will restrict our attention to it for
the remainder of the paper.

2. Methodology
Our goal was to collect usage information on overlapping instances
for as many of the packages on Hackage as possible. We hoped this
would give us both an idea of how frequently Haskell programmers
used overlapping instances, and a catalog of how they are used. In
turn, these results would drive the design of the Habit class system.

We divided the survey into two stages: first, to find which pack-
ages use overlapping instances; and second, to identify the over-
lapping instances within each of those packages. While it would
be possible to examine source code for overlapping instances by
hand, this process would be vulnerable to human error and would
become impractical for larger numbers of packages. Instead, we
instrumented GHC to detect overlapping instances and to output
information about the location of each such instance as it was en-
countered. We then attempted to build as many packages from
Hackage as possible and collected the output of our instrumenta-
tion. Sections 2.1 through 2.3 describe this process in more detail;
Section 2.4 considers the alternative of using the .cabal metadata
to determine which packages to search for overlapping instances;
Section 2.5 evaluates our methodology.

2.1 Determining package sets
The Hackage infrastructure requires that any set of packages that
it installs includes at most one version of each package [1]; unfor-
tunately, because different packages on Hackage have conflicting
requirements, this means that installing all of Hackage at once is
not possible. Therefore, our first task was to determine the largest
set of packages to check for overlapping instances.

To find such a set, we were inspired by Duncan Coutts’ descrip-
tion of using Hackage for regression testing [2]. First, we used
cabal-install to generate a list of all available packages. We
then attempted a dry run of installing those packages. Predictably,

cabal-install detected conflicting version requirements. At this
point, our approach differed slightly from that described by Coutts.
Rather than attempting to restrict the selection of packages to get a
close to optimal choice, we moved conflicting packages to a sepa-
rate package list. As a consequence, we had a number of package
sets, each internally consistent but inconsistent with all of the other
sets.

This approach was moderately effective. Our initial package list
included 1195 packages. From this, we constructed five package
lists: the first contained 992 packages, and the remaining four
included 139 more. This left 64 packages (5% of the total) that
we made no attempt to install, because:

• They required C libraries or version of GHC not available on
our survey machine; or,

• They had internally inconsistent dependency requirements; or,
• They depended on a package we were not attempting to install.

While our approach is simple to describe, filtering incompatible
packages out of packages lists can be time consuming. In particular,
if a given package is incompatible with a list, not only that package
but all packages dependent on it must be removed from the list.
To assist with this operation, we developed rudimentary support
for tracing reverse dependencies through the Hackage database.
Similar functionality is now independently available online [13].

2.2 Instrumenting GHC
Our next task was to instrument the compiler to generate out-
put about overlapping instances. By doing so, we avoided time-
consuming and error-prone manual inspection of Haskell source
code.

As described in Section 1.1, GHC orders instances by speci-
ficity when attempting to resolve a predicate and emits an error
if the applicable instances cannot be so ordered. However, predi-
cate resolution is an inappropriate place to add our instrumentation:
the same set of overlapping instances might be detected numerous
times, while other sets of overlapping instances might never be de-
tected because no predicate required their use. We were able to find
a suitable alternative place for our instrumentation. When validat-
ing instances, GHC checks that each new instance is not an exact
duplicate of an instance it has already encountered. In the process,
GHC also computes all the instances that unify with the new in-
stance. This is precisely the list of overlapping instances, so we
added code to the duplicate instance check to output that list.

This check detects overlaps that are otherwise irrelevant to the
compilation process. For example, consider the following overlap-
ping instances (originally presented in Section 1.1):

instance C (a, [b])
instance C ([a], b)

Our overlap detection would output this set of instances. On the
other hand, GHC will not check that it can order these instances
until it attempts to resolve a predicate of the form C ([a], [b]).
In fact, as long as a program does not require GHC to resolve a
predicate of that form, it would not even need to enable overlapping
instance support. On the other hand, as one of the options we were
considering for Habit was a strict limitations on overlap more akin
to that implemented by Hugs, we were still interested in detecting
this kind of unused overlap.

2.3 Collecting Results
Having identified consistent sets of packages and constructed an
instrumented compiler, we were ready to generate our survey data.
Following the technique described by Coutts, we compiled each
set of packages independently. While we cannot avoid installing

packages—a package can only be built if all of its dependencies
are installed—we were able to use cabal-install’s existing func-
tionality to ensure that each package set was installed to a distinct
location and used a distinct local package database. As a result, the
packages installed in one package set were not visible when build-
ing any other package set, and all the sets could be built without
conflict.

Unlike Coutts’ regression tests, we were interested in more in-
formation than whether each package compiled successfully; we
also needed the overlapping instance information emitted during
compilation. This meant that we had to extract the survey results
from the build logs of each package by hand, instead of being able
to use the build reports that cabal-install generates automati-
cally. Luckily, our output strings were easily identified by regular
expressions, so collecting the overlapping instances from the dif-
ferent package sets was relatively easy.

Alternatively, in the process of instrumenting GHC it would
have been possible to output the information that we collected to
particular files, possibly specified by a command line option; this
would have eliminated the need for the regular expression pass over
the build output. We did not take this step in performing our survey,
as the output of our instrumentation was easy to detect and our
changes to GHC were otherwise quite local.

2.4 Alternative: Using Package Metadata
The mechanism described in the previous sections may seem overly
elaborate, especially given that support for overlapping instances
must be enabled by specific compiler flags. As compiler flags are
listed in .cabal files, it would seem that most packages that used
overlapping instances could be detected by searching the .cabal
files for the relevant compiler options or language extensions [9],
and much of the previous work—particularly that involved in com-
piling large portions of Hackage—could have been avoided. There
were several technical reasons that convinced us to take our more
labor-intensive approach:

• While .cabal files are one place that language extensions
may be specified, they are not the only place. Individual
source files may also specify language extensions and com-
piler flags in compiler pragmas. Additionally, there are multi-
ple ways that users can enable GHC’s support for overlapping
instances, including the OverlappingInstances language op-
tion, the -XOverlappingInstances compiler flag, or the older
-fallow-overlapping-instances compiler flag.

• The presence of overlapping instance support only enables the
definition of overlapping instances; it does not require them.
This means that packages that declare overlapping instance
support may not actually contain any overlapping instances.

• Most significantly, GHC only requires that overlapping instance
support be enabled in the module that defines the less specific
(overlapped) instances. For example, consider the example in-
stances for Show from Section 1.1:

instance Show t ⇒ Show [t] where . . .
instance Show [Char] where . . .

If these instances were in separate modules (perhaps even in
separate packages), then only the module that contained the
Show [t] instance would need overlapping instance support
enabled. As a consequence, while examining those modules
that had overlapping instance support would allow us to detect
all instances that could potentially be overlapped, it would not
indicate whether, or how often, any of those instances were
actually overlapped.

We will return to this idea in Section 3.2, where we will see if
the packages detected with our methodology match up to those that
would have been selected based on their metadata files.

2.5 Evaluation
In this section, we consider the effectiveness of our methodology.

One advantage of our approach is that it required relatively
little new code. While we had to modify the GHC type checker
to emit details about overlapping instances, we were able to make
use of the existing structure of the duplicate instance check. In total,
we added 10 lines to GHC, not including comments. The changes
to cabal-install to generate reverse dependences were larger—
around 140 lines—but were localized to the implementation of a
single additional command.

We were also able to achieve decent coverage of Hackage. We
attempted to compile 1131 (95%) of 1195 packages, without mak-
ing any attempt to repair broken dependencies manually or to in-
stall packages that either depended on absent C libraries or required
non-Cabal build processes. Unfortunately, of these 1131 packages,
only 826 packages (73%) built and installed successfully. The pri-
mary cause of build failures was our choice of which compiler to
instrument. At the time that we performed the survey, the latest
released version of GHC was 6.10.2, while the version in develop-
ment was 6.11.20090330. One significant change from GHC 6.10
to 6.11 was that GHC’s build system had been retooled and sim-
plified. After several unexpected build failures using the 6.10 build
tools, we decided to use 6.11 for the survey. While this resolved
our build issues, it also had negative consequences. In addition to
the compiler itself, GHC provides several packages, including the
base package that includes the Haskell prelude as well as numerous
primitive operations and basic combinators. GHC 6.11 included
both versions 3 and 4 of the base library, whereas GHC 6.10 had
provided only version 3. As base version 4 had not yet been re-
leased, some packages did not support the changes that it made,
but still had dependencies on base without upper bounds. Cabal at-
tempted to build these packages using base version 4, which failed
during compilation.

We believe that these deficiencies would be significantly re-
duced if the survey were redone now. The current version of GHC,
GHC 6.12.2, is based on the version of GHC that we used to per-
form the survey; as a result, the survey could be done using a re-
leased version of GHC instead of a development version. The in-
compatibilities with versions of the base library are also reduced
by new features of Cabal and cabal-install [11].

A final note is that our methodology seems to be most suited
to asking positive questions, such as “how often are overlapping
instances used?” or “how many packages use GADTs?” because
it is possible to identify places where those expansions are imple-
mented within the compiler and perform local instrumentation at
that point. It seems harder to adapt our approach to questions such
as “how many packages only use language features in Haskell 98”,
as answering that question would require establishing that a (large)
set of extensions are all not used. Instead of instrumenting a single
point in the compiler, it would be necessary to check each exten-
sion of Haskell 98 and report whether none of them are used, which
would likely require non-local code changes and data collection.

3. Results
We summarize the more interesting results of our survey in two
veins: first, our conclusions about the prevalence and usage patterns
of overlapping instances; and second, some speculation about the
usage of package-level flags and language annotations.

Set size Frequency
1 1
2 76
3 20
4 11
5 1
6 4
7 2
8 4
9 1

10 1
22 1
72 1

Table 1. The observed sizes of overlapping instance sets and the
frequency with which each size appeared

3.1 Overlapping Instances
Of the 826 packages built during our survey, 57 (7%) used at least
one overlapping instance. While this may seem like a relatively
small proportion of the total code base, we think this level of usage
is not insignificant, as overlapping instances are an experimental
and somewhat arcane feature of the Haskell type system.

In the packages that used overlapping instances, we found a
total of 445 instances overlapping or overlapped by other instances.
We partitioned these instances into sets, where each instance in a
set overlaps at least one other instance in the set, and no instances
outside the set. The 445 overlapping instances partition into 123
sets. (Intuitively, imagine a graph with a vertex for each instance,
and an edge between two vertices if their corresponding instances
overlap. Our overlapping sets correspond to connected components
in the graph.) We can draw some additional conclusions about the
use of overlapping instances by examining the sets.

Out of the 123 sets, 19 included overlapping instances from dif-
ferent modules, and 6 (of those 19) included overlapping instances
from different packages. 104 (85%) of the sets only included in-
stances from a single module. This suggests that, while applications
exist for instances overlapping across modules, much of the use of
overlapping instances is quite local.

We also analyzed the size (number of instances) of each set;
the results are presented in Table 1. On average, each set had 3.6
instances. However 76 (62%) of the sets had only two instances.
The average is pulled up by several outliers: for example, one set
of overlapping instances contains 72 instances. This resulted from
the definition of a new Show instance:

instance JSON a ⇒ Show a where . . .

that overlapped all other instances of the Show class. (One could
argue further that this instance is an abuse of the Show class, as its
output is in JSON format instead of the Haskell syntax that most
Show instances use.) As a final note, there is one set of overlapping
instances that claims to contain only one instance; this resulted
from an oddity in the data set in which two different modules
defined exactly the same instance. The program containing these
modules was rejected by the compiler as a result; however, as our
data was generated simultaneously to compilation, we still detected
the identical instances.

Our data suggests that while some uses require the full gen-
erality of overlapping instances, a greater proportion of uses con-
tain a small number of locally-defined instances. To further refine
this idea, we performed a manual examination of the extracted in-
stances. We discovered two particularly common usage patterns:

•

��

��

•

��
•

•

��@
@@

@@
@@

•

��

•

��~~
~~

~~
~

•

Figure 1. Usage patterns for overlapping instances: On the left, a
three-instance chain of alternatives; On the right, a default instance
with three more specific implementations.

Alternation. These instances express (usually simple) alternation
by making later alternatives more general than earlier ones. This
pattern is fragile to encode using overlapping instances: the inten-
tion of the programmer is (somewhat) obscured, the method does
not easily scale to more than two or three alternatives, and users
can potentially add additional alternatives unintended by the origi-
nal programmer. Instances implementing alternation tend to be lo-
cal to a single module, or at most a single package. Many examples
of this style can be found in the HList package; for instance, the
hOccursMany function returns all the elements of an HList with a
particular type. It is implemented by the following three instances
(all within a single module):

instance HOccursMany e HNil where
hOccursMany HNil = []

instance (HOccursMany e l, HList l) ⇒
HOccursMany e (HCons e l) where
hOccursMany (HCons e l) = e:hOccursMany l

instance (HOccursMany e l, HList l) ⇒
HOccursMany e (HCons e’ l) where
hOccursMany (HCons _ l) = hOccursMany l

We do not imagine that a user would have reason to add additional
instances of the HOccursMany class.

Default implementations. These instances provide a default im-
plementation for some complex behavior, based on other pre-
existing classes. This pattern is roughly similar to one of the func-
tionalities of base classes in object-oriented hierarchies. These in-
stances can be spread across multiple modules or packages. We
found these examples particularly common in serialization and
generic programming libraries; for example, the hsx package in-
cludes an instance declaration:

instance (XMLGen m, XML m ∼ x) ⇒
EmbedAsChild m x where
asChild = return ◦ return ◦ xmlToChild

This provides one way for the EmbedAsChild class to be populated,
but is far from the only way. Several other packages, such as the
HJScript package, add their own instances to the EmbedAsChild
class.

Earlier, we suggested that sets of overlapping instances can be
viewed as graphs, with vertices for each instance and edges for each
overlap. We could extend this intuition to take account of specifity
by directed edges from the more specific to the less specific in-
stances. This would allow us to describe the usage patterns graphi-
cally, as in Figure 1.

Unfortunately, we did not collect enough information to au-
tomate classifying instances into the usage patterns easily. For
each overlapping instance, our survey emits the list of unifying
instances, because this is already computed by GHC. However, it

would have been more useful to compute and emit specificity infor-
mation with each overlapping instance. This would have allowed
some automatic discovery of patterns.

Even after manual examination, it is not always apparent
whether an overlapping instance set belongs to either of the above
patterns. For example, the following two overlapping instances ap-
pears in the mmtl package:

instance MonadState s (State s) where . . .

instance (MonadTrans t, Monad (t (State s)))
⇒ MonadState s (t (State s)) where . . .

There are two ways we could interpret these instances:

• Any state monad should include the State type at some point.
This pair of instances provides a complete implementation of
the MonadState class.

• The State type provides one way implement state monads, but
there are many others. This pair of instances is not the complete
implementation of the MonadState class.

It is not clear from the data which of these alternatives is preferred.
While we found no implementations of the MonadState class out-
side the mmtl package, which supports the first interpretation, it
does not seems as clear to us as the hOccursMany example above.

One approach we could use to resolve questions like the usage
of MonadState would be to take the intended use of the package
into account. If the package defines an application, or defines a li-
brary with many users on Hackage, then we can be relatively certain
of the conclusions drawn from the overlaps we detected. However,
for libraries without many users on Hackage, the conclusions of our
survey would still be uncertain.

3.2 Flags and Annotations
Having completed the survey, we returned to the question raised
in Section 2.4 about whether using the Cabal metadata would be
a suitable substitute for building all of Hackage. Surprisingly, we
found that only 13 of the 57 packages that contained overlapping
instances declared the corresponding language extension or GHC
flag in their Cabal metadata. However, 59 packages that did not ac-
tually contain any overlapping instances included the overlapping
instances flag in their metadata. We can imagine several reasons for
this:

• Packages may use overlapping instances to provide default im-
plementations for new classes without providing any more spe-
cific implementations. In this case, the package author would
need to enable overlapping instance support, but our method
would only find overlapping instances if there were more spe-
cific implementations elsewhere on Hackage.

• Package authors may use standard .cabal file templates, or
may not remove options from .cabal files when they are no
longer applicable.

• Package authors may prefer to use source level language prag-
mas when particular features or options are only needed in a
portion of an entire package.

4. Conclusion
In the introduction, we posed three alternatives for the design of the
Habit class system:

1. Support overlapping instances as they exist in implementations
of Haskell;

2. Do not support overlapping instances at all; or,

3. Define an alternative class system feature that supports many of
the uses of overlapping instances without introducing as much
complexity.

Our survey suggested that there were a significant number of uses
of overlapping instances, including several valuable type-class pro-
gramming paradigms. This rules out Option 2. However, it also
suggested that many uses of overlapping instances did not require
the full power of the extension implemented by Haskell compil-
ers, leading us to investigation of Option 3. Our consideration of
the alternative pattern led to the creation of instance chains, a new
feature of the Habit class system described at length elsewhere [5].
Our examination of the default instance pattern is less advanced;
while we have alternative coding patterns that provide default im-
plementations without using overlapping instances, they have not
yet received as much testing as instance chains.

Related work. This paper describes a use of the Hackage repos-
itory for language design; we believe it is one of the first such
descriptions. However, there have been several similar projects.
We were strongly guided by Duncan Coutts’ description of us-
ing Hackage for regression testing [2]. Another inspiration came
from Andrew Wright’s study of the value restriction in Standard
ML [15], which studied a wide variety of ML programs to deter-
mined whether a language design choice was justified.

Future work. As discussed in Sections 2 and 3, there are numer-
ous ways that our survey could be improved, and were we to per-
form the survey now we would have access to significantly more
data. Despite this, we believe the survey as performed captured a
representative sample of the use of overlapping instances on Hack-
age. Therefore, we are not currently intending to revisit this survey.
We are, however, hoping to find other language design questions
amenable to our general approach.

Should we do so, there are several aspects of the survey that
would be improved by additional automation. In particular, al-
though we did parts of the separation of Hackage into consistent
package sets manually, we imagine that it would be possible to au-
tomate it entirely. That would make updating the results of future
surveys relatively painless.

Another interesting problem has to do with the generation of in-
strumented compilers. Despite the existing GHC API, we had two
reasons for modifying GHC itself: first, because the data we needed
was already computed while checking for duplicate instances, in-
strumenting the compiler there was particularly painless. Second,
while telling the Cabal build process to use a particular (instru-
mented) GHC is quite simple, adding additional steps to the com-
pilation process (such as running a separate program, built using
the GHC API, to collect overlap information) is more complex.
However, this also leads to disadvantages: the output from our in-
strumentation process is intertwined with the regular output from
GHC, and modifying and building GHC is a heavyweight process
for relatively simple instrumentation.

Acknowledgements. Thanks to Mark Jones for his advice during
the conception, execution, and description of this survey, and to the
anonymous reviewers for their helpful feedback and discussion of
the submitted draft of this work.

References
[1] D. Coutts. Solving the diamond dependency problem.

http://blog.well-typed.com/2008/08/solving-the-diamond-
dependency-problem/, 2008. Last accessed June 8, 2010.

[2] D. Coutts. Regression testing with hackage. http://blog.well-
typed.com/2009/03/regression-testing-with-hackage/, 2009.
Last accessed June 8, 2010.

[3] M. P. Jones. Hugs 98. http://haskell.org/hugs.

[4] Lemmih, P. Martini, B. Bringert, I. Potoczny-Jones, and D. Coutts.
cabal-install: The command-line interface for cabal and hackage.
http://hackage.haskell.org/package/cabal-install. Last ac-
cessed June 7, 2010.

[5] J. G. Morris and M. P. Jones. Instance chains: Type-class programming
without overlapping instances. In ICFP ’10, Baltimore, MD, 2010.
ACM.

[6] D. Orchard and T. Schrijvers. Haskell type constraints unleashed.
Lecture Notes in Computer Science, 6009:56–71, 2010.

[7] S. Peyton Jones, M. P. Jones, and E. Meijer. Type classes: an explo-
ration of the design space. In Haskell ’97, Amsterdam, The Nether-
lands, 1997.

[8] T. Schrijvers, S. Peyton Jones, M. Chakravarty, and M. Sulzmann.
Type checking with open type functions. In IFCP ’08, pages 51–62,
Victoria, BC, Canada, 2008. ACM.

[9] D. Stewart. Re: [Haskell-cafe] Overlapping/Incoherent in-
stances. http://www.haskell.org/pipermail/haskell-cafe/
2008-October/049155.html, 2008. Last accessed June 8, 2010.

[10] W. Swierstra. Data types à la carte. JFP, 18(04):423–436, 2008.
[11] The Cabal Team. #435 (ban upwardly open version ranges in depen-

dencies on base). http://hackage.haskell.org/trac/hackage/
ticket/435, 2009. Last accessed June 8, 2010.

[12] The GHC Team. GHC. http://haskell.org/ghc, 2009.
[13] R. van Dijk. Ann: Reverse dependencies in hackage (demo).

http://www.haskell.org/pipermail/haskell/2009-
October/021691.html, 2009. Last accessed June 8, 2010.

[14] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In POPL ’89, pages 60–76, Austin, Texas, United States, 1989.
ACM.

[15] A. K. Wright. Simple imperative polymorphism. Lisp and Symbolic
Computation, 8(4):343–355, 1995.

