
Type Classes and Instance Chains:

A Relational Approach

by

John Garrett Morris

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Mark P. Jones, Chair

Sergio Antoy

James G. Hook

Andrew P. Tolmach

M. Paul Latiolais

Portland State University

2013

© 2013 John Garrett Morris

i

ABSTRACT

Type classes, first proposed during the design of the Haskell programming lan-

guage, extend standard type systems to support overloaded functions. Since their

introduction, type classes have been used to address a range of problems, from

typing ordering and arithmetic operators to describing heterogeneous lists and

limited subtyping. However, while type class programming is useful for a variety

of practical problems, its wider use is limited by the inexpressiveness and hidden

complexity of current mechanisms. We propose two improvements to existing class

systems. First, we introduce several novel language features, instance chains and

explicit failure, that increase the expressiveness of type classes while providing

more direct expression of current idioms. To validate these features, we have built

an implementation of these features, demonstrating their use in a practical setting

and their integration with type reconstruction for a Hindley-Milner type system.

Second, we define a set-based semantics for type classes that provides a sound basis

for reasoning about type class systems, their implementations, and the meanings

of programs that use them.

ii

ACKNOWLEDGMENTS

This dissertation, and the research it describes, would not have been possible

without the help and support of numerous others over my time as a graduate

student. First and foremost, I thank Mark Jones, my advisor, for his advice,

encouragement, and for many hours of stimulating and enlightening discussions.

Next, I should thank the other members of the HASP research group, and in

particular James Hook and Andrew Tolmach, for their feedback and suggestions

over the course of this research and development of this dissertation. Finally, I

must thank my family for their love and unwavering support, particularly over the

past several years.

iii

TABLE OF CONTENTS

Abstract . i

Acknowledgments . ii

List of Figures . v

1 Introduction . 1

1.1 Instance Chains and the Habit Class System 6

1.2 Outline of Dissertation . 8

2 A Brief Introduction to Polymorphism and Overloading 11

2.1 The Hindley-Milner Type System 12

2.2 Type Classes . 13

2.3 The Theory of Qualified Types . 17

2.4 Extensions of Type Classes . 20

3 Programming with Instance Chains 29

3.1 Overlapping Instances in Practice 30

3.2 Programming with Type Classes . 41

3.3 Design of the Habit Class System 50

3.4 Case Study: Extensible Data Types 61

3.5 Related Work . 73

4 A Logic of Instance Chains . 75

4.1 Syntax . 75

4.2 Classes and Implementations . 79

4.3 Modelling Type Classes . 81

4.4 Acceptability and Model Existence 92

4.5 Entailment and Qualified Types . 106

4.6 Related Work . 115

iv

5 Semantics for Overloading . 117

5.1 Simply-Typed Lambda Calculus . 117

5.2 A Simple Semantics for Polymorphism 120

5.3 A Simple Semantics for Overloading 128

5.4 Example: Polymorphic Identity Functions 138

5.5 Related Work . 140

6 The Habit Predicate Solver . 145

6.1 Entailment and Evidence . 145

6.2 Simplification . 151

6.3 Improvement . 155

6.4 Implementation Mechanisms . 159

6.5 Related Work . 176

7 Future Work . 179

7.1 Refining Acceptability . 180

7.2 Generalizing Superclasses . 182

7.3 Semantics of Overloading . 188

7.4 Proof by Cases . 189

References . 192

v

LIST OF FIGURES

3.1 Locations of overlapping instances 38

3.2 Numbers of overlapping instances 38

3.3 Type-level Peano numerals . 42

3.4 Type-level insertion sort . 42

3.5 Type-level greatest common divisor 44

3.6 Heterogeneous list types and examples 45

3.7 project class and implementation 46

3.8 Removing elements of a particular type from an h-list 48

3.9 Concrete syntax of Habit predicates, classes, and instances 51

3.10 Instance chains and default implementations 60

3.11 Extensible expression types . 63

3.12 First attempt to define expression values. 65

3.13 Overloaded injection function. 66

3.14 Overloaded injection function with instance chains. 67

3.15 Stricter version of injection function. 67

3.16 Defining expression values . 68

3.17 Overloaded projection combinator 70

3.18 Individual evaluation cases . 71

3.19 Evaluation functions . 71

3.20 Expression printers . 72

4.1 Habit class system syntax (abbreviated) 76

4.2 Top-level deduction rules for predicate entailment. 107

4.3 Axiom-specific deduction rules for predicate entailment. 108

5.1 Types and terms of the simply typed lambda calculus 118

5.2 Typing rules of the simply typed lambda calculus 118

5.3 Types and terms of Core ML . 120

5.4 Typing rules of Core ML . 121

vi

5.5 Types and terms of OML . 128

5.6 Expression typing rules of OML . 129

5.7 Program typing rule for OML . 132

5.8 Polymorphic identity function, defined using parametric (id1) and

ad hoc (id2) polymorphism . 139

6.1 Example program definitions . 162

6.2 Example solver execution (part 1) 163

6.3 Example solver execution (part 2) 165

6.4 The Node datatype . 166

6.5 The Tree and Metadata datatypes 168

6.6 The Path zipper data type . 168

6.7 The Trail datatype . 169

6.8 The SolverState datatype . 170

6.9 Tactics and associated types . 171

6.10 Monad instance for the Tactic type constructor 171

6.11 Tactic combinators . 172

6.12 Code size of solver implementation 176

7.1 Non-parametric behavior without qualified type 190

1

1. INTRODUCTION

Type systems play a central role in assuring program correctness. By providing

sound, decidable approximations of semantic properties, types allow compilers to

detect entire classes of program errors automatically, and they establish properties

of programs and program components, providing a basis for further understanding

or verification efforts. However, these benefits come at a cost: limitations in a

typing discipline in turn limit the programs that can be well-typed under that

discipline. Thus, improving the expressiveness of type systems—that is, increasing

the fidelity of their approximation of underlying semantic properties—is a central

concern for the development of typed programming languages, and for program

validation as a whole.

One early challenge in the development of type systems was to support poly-

morphism, in which the same symbol or expression can have multiple meanings,

corresponding to multiple, distinct types. Following Strachey [62], we identify two

classes of polymorphism, parametric and ad hoc.

� Parametric polymorphism arises when an expression can take on any of a

regularly formed family of types. A typical example of parametric polymor-

phism is the function that reverses a list. This function can be applied only

to list values, and always returns list values. However, assuming a uniform

representation of list types, it does not depend upon the type of the elements

of the list—it could be applied equally well to lists of integers, of Boolean

values, or of more complex types. Thus, we can imagine that the reverse

2

function should be able to take on any type in the set

{[τ]→ [τ] | τ ∈ Type},

where Type is the set of all types, and we write [τ] for the type of lists with

elements of type τ , and τ → τ ′ for the type of functions from values of type

τ to values of type τ ′. This is called “parametric” because such sets can

be captured by writing parameters in types. Thus, instead of the set com-

prehension above, it is common to write the type of the reverse function as

[t] → [t], where the type parameter t is implicitly universally quantified.

� Ad-hoc polymorphism, also called overloading, arises when an expression’s

types cannot be described just with types and type variables. For example,

we might expect the elem function, which determines whether a candidate

value is in a particular list, to be applicable to list of integers or character

strings, but not to lists of functions, as we do not expect to have a com-

putable equality test for functions. Similarly, we might expect arithmetic

operations, like addition or multiplication, to be applicable to integers and

fractional values, but not to character strings. Finally, the implementation

of an ad-hoc polymorphic value is likely to be different at each of its types.

For example, while we might expect that the reverse function will have uni-

form implementation for different list element types, we would not expect a

common implementation of addition for integers and floating-point values.

There have been numerous approaches to strongly-typed parametric polymor-

phism, including the Hindley-Milner system [5, 21, 41], the Girard-Reynolds poly-

morphic lambda calculus [15, 52], and, more recently, mechanisms for generics in

Java and C#. We will focus on the Hindley-Milner system and its extensions,

as it has several advantages for our purposes. First, it has seen relatively wide

adoption, underlying the ML and Haskell programming languages and their var-

ious dialects. Second, its semantics has been well-studied, providing a basis to

3

study the semantics of overloading. Third, expressions in a Hindley-Milner setting

have principal, or most general, types. Fourth, the principal type of an expression

in a Hindley-Milner setting can be computed from the expression itself, without

requiring programmer-supplied type annotation; the process of doing so is called

type inference. It is possible to define type inference algorithms in settings that

lack principal types; however, because there is no single, most general type for an

expression in such a setting, the inferred type of an expression may not correspond

to its intended use. The programmer is therefore required either to understand the

details of the type inference algorithm, or to defensively add type annotation even

when they may not be necessary. By contrast, the ML or Haskell programmer

can be confident that the inferred type of an expression is general enough for any

well-typed use of the expression. Thus, the existence of principal types is not just

an interesting theoretical property, but an important contribution to the usability

of languages and tools built on the Hindley-Milner type system.

There have been fewer widely-adopted mechanisms for strongly-typed, ad-hoc

polymorphism in functional programming languages. Standard ML, for example,

provides a syntactic distinction between variables that range over any type and

variables that range over any type supporting equality; thus, the elem function

could be given a type using the latter kind of variable. However, this mechanism

is not generic: it is not extensible to support user-supplied notions of equality,

or other sources of ad-hoc polymorphism. Ocaml provides an equality operation

that ranges over all types, generating run-time exceptions if it is applied to types

such as functions. While general purpose, this lacks the degree of static assurance

provided by type-based approaches. One successful approach to strongly-typed

ad-hoc polymorphism is provided by type classes, which were originally proposed

by Wadler and Blott [70], as an extension of the Hindley-Milner type system. Type

classes play three roles in programs:

� First, type classes provide a generic mechanism to constrain the instantiation

4

of type variables, and thus to provide principal types for expressions with

ad-hoc polymorphism. For example, Wadler and Blott describe a type class,

named Eq, that contains those types that support equality. This class can be

used to constrain the instantiation of variables in the types of polymorphic

values. For example, we would infer the type Eq t ⇒ t → [t] → Bool for

the elem function, where the constraint Eq t indicates that variable t can

only be instantiated with types from the Eq class. As we did for parametric

polymorphism above, we can interpret this type as a set comprehension, but

one in which the domains of variables is limited to the set Eq ⊆ Type:

{τ → [τ]→ Bool | τ ∈ Eq}.

� Second, type classes provide a way to describe the type-specific implementa-

tions of ad-hoc polymorphic expressions. For example, we expect the equality

function for comparing integers to have a different implementation from the

equality operator for character strings. Wadler and Blott observed that these

implementation correspond to proofs (that is, the implementations witness

the proofs) that Booleans or integers are in the class Eq. This observa-

tion has two applications. First, it can help to derive the implementation

of overloaded values; for example, we can conclude from the Eq t predi-

cate in its type that, for a given type τ the implementation of elem at type

τ → [τ] → Bool may depend on the proof that τ ∈ Eq , that is, on the

τ -specific implementation of the equality function. Second, it allows proofs

that families of types are in classes. For example, given a witness of τ ∈ Eq ,

we can generically construct a witness that [τ] ∈ Eq . These mechanisms

admit a good deal of automation. While the programmer must provide the

basic proof rules, such as that Int ∈ Eq and that τ ∈ Eq =⇒ [τ] ∈ Eq , the

compiler can then use them to automatically construct larger proofs, such as

to demonstrate that the types [Int] and [[Int]] are also in the Eq class.

5

� Third, type classes define properties on types. We have already relied on this

interpretation when we wrote set comprehensions such as {τ → [τ]→ Bool |

τ ∈ Eq}, which interpreted classes as subsets of Type, and thus, as properties

on Type. When they introduced type classes, Wadler and Blott proposed

that some class predicates might apply to multiple types; for example, the

predicate Coerce a b would indicate that values of type a could be coerced

into values of type b. We can interpret these multi-parameter classes as

relations on types; this allows us to begin using classes to capture static

information beyond simply the witness of class membership. For example,

Jones [31, 32] built on this notion of classes as relations on types to describe

mechanisms by which the satisfiability of predicates could be used to improve

type inference, both by reducing ambiguity in inferred types and by detecting

erroneous programs closer to the original source of the error.

Since their introduction, there has been significant interest, both scholarly and

practical, in type classes. Unfortunately, this work has frequently uncovered com-

plexities in the class system, and much of it has failed to gain wide acceptance.

Wadler and Blott’s formal treatment of classes and their implementations [70]

provided lexically scoped instances; however, this approach has not been recon-

ciled with principal typing. Haskell compilers have long supported overlapping

instances [50], permitting the definition of more generic instances. However, this

leads to both complications in reasoning about the type system, and undermines

equational approaches to reasoning about the meanings of Haskell expressions.

Functional dependencies [32] saw widespread adoption as a tool to combine over-

loading and type-level reasoning. However, perceived implementation difficul-

ties led to the proposal of new mechanisms, such as indexed type families [56],

which separate type classes from other approaches to type-level reasoning. Fi-

nally, Haskell implementations differ in their interpretations of these extensions;

for example, the Hugs compiler [24] provides a more flexible system of functional

6

dependencies than does GHC [14], while GHC’s implementation of overlapping in-

stances is more permissive than that of Hugs. Thus, we believe that the design and

implementation of type class systems remains an open research problem, of import

both to the development of Haskell, and to the development of strongly-typed

programming in general.

1.1 INSTANCE CHAINS AND THE HABIT CLASS SYSTEM

We have recently been involved in the design of the programming language Habit,

a dialect of Haskell intended for high-assurance low-level programming, and par-

ticularly in the specification of its type system and implementation of its type

inference mechanisms. In doing so, we have developed a new collection of type

class features (alternative clauses, exclusion, and backtracking, which we collec-

tively term instance chains), intended to support, and expand upon, the expressive

capabilities of Haskell type classes a mechanism both for typing overloaded values

and for type-level computation, while providing a sound basis for reasoning about

Habit programs, and avoiding the difficulties encountered with Haskell type classes

and their extensions. This dissertation describes the results of that effort, in terms

of the design of the Habit language, the semantics of classes and of overloaded

expressions, and the implementation of a Habit compiler.

Language design. The design of the Habit class system is motivated by existing

uses of the Haskell class system and its extensions, and by the difficulties and inex-

pressiveness those uses have encountered. Based on a survey of the literature and of

Hackage, an online repository of Haskell libraries and applications, we have identi-

fied three significant patterns, beyond simple overloading, in the use of the Haskell

class system and its extensions. Each of these patterns has a clearer, or less prob-

lematic, expression in the Habit class system than it does in Haskell. We provide

a collection of examples to validate these claims and, as a further demonstration

7

of the features of the Habit class system, show a new solution to the expression

problem. The expression problem is a classic benchmark in programming language

expressiveness [2, 37, 53, 69]: it requires the extension of both the constructors of,

and the operations over, an abstract data type. Our solution builds on existing

Haskell approaches [38, 64] to the expression problem; we improve on those ap-

proaches in two respects. First, we support greater flexibility in the injection of

values into extensible data types. Second, we provide a generic mechanism to de-

scribe operations over extensible data types, whereas existing solutions require the

definition of a new type class for each such operation.

Semantics of classes. Our semantics of classes provides a sound basis for rea-

soning about the meaning of classes and class predicates. By providing this seman-

tics, we hope: first, to avoid confusion about the meaning of class system features,

as observed in Haskell; second, to provide a foundation for future extensions to

the Habit class system; and, third, to provide a standard for implementations of

the Habit class system. We begin with an intuitive notion of the meanings of

classes, interpreting each class as a mappings from types (or tuples of types) to

the corresponding implementations of the class methods We then give a semantics

for class predicates by building Kripke frame models [36] from our interpretations

of classes. Finally, we define computable notions of acceptability (which describes

whether the compiler accepts a given collection of class and instance declarations)

and entailment (which describes the proofs the compiler can compute), and we

show that each of these notions is sound with respect to our semantics.

Semantics of overloading. We build on our semantics of classes to give a

semantics of overloaded expressions, completing our semantics of overloading in

Habit. We adopt an approach originally developed by Ohori [48] in his semantics

of Core ML; unlike other semantics for ML-like languages, Ohori’s approach is

8

suited to both ad-hoc and parametric polymorphism. We show that our notion

of the meanings of classes naturally gives rise to the semantics of their methods,

and that the soundness of entailment then gives the soundness of the (simplified)

Habit type system with respect to our semantics. Unlike previous semantics of

type classes, our approach gives meaning to class methods directly, rather than by

translation; we believe this permits more direct reasoning about overloaded values

and their meanings.

Implementation. It is not enough to be able to reason about overloaded values;

we would like to be able to compile them as well. Thus, we conclude by discussing

our Habit predicate solver, the implementation of Habit class system in the HASP

group’s complete Habit compiler. We describe three aspects of the interface be-

tween the solver and the type inference component of the Habit compiler: first, the

interpretation of entailment proofs as evidence, suitable for compiling overloading;

second, the simplification of inferred predicate sets; and third, the computation

of type equalities implied by the satisfiability of predicate sets. Finally, we give a

broad overview of the data structures and abstractions that make up our solver’s

implementation and its interface to the remainder of the compiler.

1.2 OUTLINE OF DISSERTATION

The primary contributions of this dissertation are:

1. The design of the instance chain mechanisms (alternative clauses, exclusion,

and backtracking search) in the Habit class system;

2. A collection of examples, drawn partially from a survey of a large, public

repository of Haskell libraries and applications, motivating the design of in-

stance chains, and demonstrating their expressiveness;

9

3. A novel semantics of type classes, based on Kripke frame semantics, relat-

ing class and instance declarations to intuitive models of classes and their

meanings;

4. Validity and entailment relations, describing the interaction between classes

and typing, and proofs of their soundness;

5. The first translation-free semantics for programs with overloading, building

on Ohori’s semantics of Core ML and our semantics of type classes; and,

6. A discussion of our practical implementation of instance chains, and its in-

teractions with type inference, in the context of a prototype compiler for

Habit.

The remainder of the dissertation proceeds as follows. Related work is summa-

rized at the end of each chapter.

Chapter 2 gives a brief introduction to: the Hindley-Milner type system; Wadler

and Blott’s proposal of type classes; Jones’s generalization of type systems with

predicates; and, several extensions of type classes implemented by the various

Haskell compilers.

Chapter 3 describes the language design aspects of our work, including: our

survey of type classes in Haskell programs; an intuitive description of the new

features of the Habit class system; and, our case study of the expression problem.

This chapter addresses contributions (1) and (2).

Chapter 4 develops the semantics of classes, and the logic of class predicates,

including our development of the validity and entailment relations, and our proofs

of the soundness of each. This chapter addresses contributions (3) and (4).

Chapter 5 develops the semantics of overloaded expressions; we begin with an

introduction to Ohori’s approach to semantics and Harrison’s [18] extension of that

approach to support polymorphic recursion, the continue to describe our semantics

of overloading and to prove its soundness. This chapter addresses contribution (5).

10

Chapter 6 describes the Habit predicate solver, its interface to the remainder

of the Habit compiler, and gives a high-level overview of its implementation. This

chapter addresses contribution (6).

Finally, chapter 7 sketches several directions for future development of this

work.

11

2. A BRIEF INTRODUCTION TO POLYMORPHISM AND

OVERLOADING

In this chapter, we provide a brief introduction to the treatment of polymorphism

in typed functional languages, particularly Haskell. Following Strachey [62], we

identify two classes of polymorphism:

� Parametric polymorphism arises when an expression has regular meanings

over its range of types; the name arises from the use of type parameters in

describing the types of such value; and,

� Ad-hoc polymorphism, or overloading, arises when the meaning of an expres-

sion is distinct at different types.

We begin by discussing the Hindley-Milner type system (§2.1), an approach to

parametric polymorphism adopted in the programming languages ML, Haskell,

and their dialects. We go on to discuss type classes (§2.2), a feature of Haskell that

extends the Hindley-Milner system to accommodate ad-hoc polymorphism. Next,

we discuss Jones’s theory of qualified types (§2.3), which generalizes the treatment

of type classes to apply to arbitrary predicates on types, and re-establishes many

of the advantageous attributes of Hindley-Milner typing. We will rely on Jones’s

type system in the remainder of the dissertation, allowing us to focus on the class

system itself. Finally, we give an overview of several commonly used extensions

of Haskell type classes: multi-parameter type classes (§2.4.1), functional depen-

dences (§2.4.2), and overlapping instances (§2.4.3). In particular, we identify a

serious flaw in latter (§2.4.4), setting the stage for the features of the Habit class

system that are developed in the remainder of this dissertation.

12

2.1 THE HINDLEY-MILNER TYPE SYSTEM

The Hindley-Milner type system [5, 21, 41] provides one approach to parametric

polymorphism. It assigns type schemes to expressions, capturing generic usage

through (implicitly quantified) type variables. For example, the reverse function,

which reverses the elements of a list, could be typed as

reverse :: [t] → [t]

meaning that, for any type t, reverse transforms a list with elements from t into

another list with elements from t. A polymorphic value can be used at any type

that is a generic instance—a substitution of types for quantified type variables—of

its type scheme; in the case of reverse, these include the types [Int] → [Int]

and [(Int, Bool)] → [(Int, Bool)], but not [Int] → [Bool]. Intuitively, if

Type is the set of all types, then we expect reverse to take on any type in the set

{[τ]→ [τ] | τ ∈ Type}.

This is clearly not the only type scheme that we could assign to reverse; we

could also assign it types such as [(a, b)] → [(a, b)] or even [Int] → [Int].

In this case, it should be apparent that any type scheme we could assign to

reverse is (the quantification of) one of the generic instances of the type scheme

[a] → [a], and thus that [a] → [a] is, in some sense, the most general type

scheme of the reverse function. Such a type scheme is called a principal type, and

is unique (up to renaming of bound variables). A significant feature of Hindley-

Milner typing, in contrast to some other systems of parametric polymorphism, is

that every expression has a principal type. Further, there is a process, called type

inference, that automatically computes the principal type of any well-typed expres-

sion. This provides for strong typing—with the associated semantic guarantees—

without requiring programmers to provide explicit type annotations in programs.

13

The Hindley-Milner type system, however, provides no support for ad-hoc poly-

morphism, limiting the expressive power of Hindley-Milner types. For example

while the reverse function is fully generic—we can expect to apply it to lists of

any type—the list membership function elem (which determines if a particular

value is an element of a list) must be able to compare its arguments for equality,

and thus could only be applied to lists whose elements support computable equality

comparisons. Thus, while the elem function could have numerous Hindley-Milner

types, such as Int → [Int] → Bool or Char → [Char] → Bool, it does not

have a principal type.

A variety of approaches have been used to support ad-hoc polymorphism in

Hindley-Milner systems: Standard ML [42], for example, provides distinguished

type variables that can only range over types supporting equality, and overloads

arithmetic functions to support both the built-in integer and floating point types.

However, these mechanisms are not extensible, either to arithmetic operations on

user-defined types, such as complex numbers or matrices, or to allow the introduc-

tion new overloaded operators, such as ordering comparators.

2.2 TYPE CLASSES

Type classes, proposed by Wadler and Blott [70] during the design of the program-

ming language Haskell, provide an extensible mechanism for typing overloaded

functions, allowing the definition of both new overloaded operators and new in-

stances of existing overloaded functions. A type class captures an open (i.e., exten-

sible) set of types, associating with each member of the class the implementation

of a specific collection of functions, called the class methods. This set is populated

by a collection of instance declarations, each describing a particular way of imple-

menting the class methods for a given type or (parametric) range of types. For

example, the Eq class, used in Haskell to capture the types that support equality.

This class is declared:

14

class Eq t

where (==) :: t → t → Bool

(6=) :: t → t → Bool

specifying that for a type to be in Eq, it must provide an implementation of equal-

ity (==) and inequality (6=) functions. The Haskell standard libraries provide

instances of Eq for base types, such as the type of 32-bit integers, like the following:

instance Eq Int

where x == y = isZero (x - y)

x 6= y = not (isZero (x - y))

as well as instances for parameterized types, such as the following instance for

pairs:

instance (Eq a, Eq b) ⇒ Eq (a, b)

where (x, y) == (x', y') = x == x' && y == y'

(x, y) 6= (x', y') = x 6= x' | | y 6= y'

We can characterize the Eq class by identifying those types it includes. Given the

instances above, we would expect the Eq class to contain at least the following

subset of Type, the set of all types:

{Int , (Int , Int), ((Int , Int), Int), (Int , (Int , Int)), . . . }.

We use the Eq class to provide principal types for expressions that depend

on equality, such as the elem function in the prior section, introducing type-class

predicates that restrict, or qualify, the variables that appear in their types. For

example, the type of the equality operator reflects the restriction that it can only

be instantiated at types in Eq :

(==) :: Eq t ⇒ t → t → Bool

15

In contrast to the reverse function, which can be used at any generic instance

of its type scheme, the (==) function can only be used at generic instances that

satisfy its constraints. For example, it can take on types

Int→ Int→ Bool

or

(Int, Int)→ (Int, Int)→ Bool

but not types such as

(a→ b)→ (a→ b)→ Bool,

as we do not expect a decidable equality predicate for functions. We can use the

overloaded equality operator to define the list membership function:

elem x [] = False

elem x (y : ys) = x == y | | elem x ys

which would have the principal type scheme

elem :: Eq t ⇒ t → [t] → Bool

including the qualifier, Eq t, arising from the use of (==). Both of these uses of

the Eq class are open: the programmer can either add new types to the Eq class,

or write new functions that make use of its methods, without having to make any

changes to existing code or usage.

Wadler and Blott give meaning to overloaded expressions, such as the definition

of elem, using a dictionary-passing translation. In this approach, an expression

with a qualified type is translated into a function with one (additional) parameter

for each predicate in its qualifier. This parameter receives a tuple of type-specific

implementations of class methods, called a dictionary, derived from the instance

declarations in the program. References to class methods within the expression are

translated into references to components of the dictionary arguments, while other

overloaded expressions are translated to add suitable dictionary arguments. For

16

example, the Eq class has two methods—the equality and inequality functions—

so a dictionary for this class to might be described by tuple of functions of the

following type

type EqD a = (a → a → Bool, a → a → Bool)

and each instance declaration would be translated into a corresponding value of

type EqD; for example, the instance for integers above would be translated to the

following value of type EqD Int:

eqIntD = (λx y → isZero (x - y), λx y → not (isZero (x - y)))

We can now demonstrate the dictionary-passing translation of the elem function.

As shown above, the type scheme of the elem function has one qualifier; therefore,

the type scheme of the translated function (for clarity, called elemD) will have one

dictionary parameter:

elemD :: EqD t → t → [t] → Bool

The translation of the body of the elem function is straight-forward:

elemD (eq, neq) x [] = False

elemD (eq, neq) x (y : ys) = eq x y | | elemD (eq, neq) x ys

Note that the call to (==), a class method, has been transformed into a call to

the parameter eq, and that the recursive call to elem has been translated to a

call to elemD, with the dictionary argument (eq, neq). We could apply a similar

approach to translate instances with qualifiers into dictionary constructors; for

example, the instance of Eq for pairs might be translated:

eqPairD :: EqD a → EqD b → EqD (a, b)

eqPairD (eqA, neqA) (eqB, neqB) = (eqPair, neqPair)

where eqPair (x, y) (x', y') = eqA x x' && eqB y y'

neqPair (x, y) (x', y') = neqA x x' | | neqA y y'

17

Finally, where qualifiers can be proved in the original program, dictionary values

are inserted in the translated program. For example, we would not expect a use of

elem on list of integers to have a qualified type, as the constraint Eq Int can be

discharged:

fiveIsOdd :: Bool

fiveIsOdd = elem 5 [1,3..]

In the translation of this code, elemD still needs dictionary arguments; however,

we can provide those arguments using the dictionaries built from the instance

declarations in the source program:

fiveIsOddD :: Bool

fiveIsOddD = elemD eqIntD 5 [1,3..]

The version we have presented here follows Wadler and Blott’s description of

type classes. To formalize type classes, they present a typing and translation

relation in which classes and instances are lexically scoped, instead of being top-

level, global declarations. This introduces some formal difficulties not present in

their more intuitive description; in particular, as they observe, the introduction of

local instances undermines principal typing.

2.3 THE THEORY OF QUALIFIED TYPES

In his theory of qualified types [28], Jones develops a general system of typing

with qualification. Rather than focus on a particular form of predicate, as Wadler

and Blott did in their work on type classes, Jones adopts an abstract notion of

predicate. He demonstrates that his system can describe not only typing with type

classes, but also forms of record typing and subsumption. He presents a generic

overloaded lambda calculus, called OML, and its type system; because he treats

predicates abstractly, Jones’s type system distinguishes the generic manipulation

18

of predicates necessary for typing from the domain-specific entailment relation

among predicates.

Jones gives a notion of principal typing for OML; this is made more complex

by the presence of predicates in types. We have previously described a principal

type scheme for a given expression as being one such that any other type of the

expression is a generic instance of its principal type, and we have claimed that

the principal type is unique, up to renaming of bound variables. For example,

we could give the reverse function either of the type schemes [a] → [a] or

[b] → [b]; however, while these types are syntactically distinct, we can transform

either to match the other, by suitable substitution for the bound variables a and

b. This is no longer true for qualified types. For example, with the instances

in the Haskell standard libraries, the predicate Eq [t] holds if, and only if, the

predicate Eq t also holds. Thus, we can observe that, in an intuitive sense, the

two type schemes Eq t ⇒ t → t and Eq [u] ⇒ u → u describe the same sets

of types; however, there is no transformation of the variables t and u such that

one will equal the other. To account for this difficulty, Jones develops the notion

of a principal satisfiable type [28]. Intuitively, given some initial predicates P0, a

principal satisfiable type P ⇒ τ of some expression is one such that, for any other

type Q ⇒ τ ′ of the same expression, τ ′ is a generic instance of τ , and, if Q follows

from P0, the instantiation of P also follows from P0. Jones shows that each OML

expression has a principal satisfiable type, and gives a type inference algorithm

that computes such a type scheme for any well-typed OML expression.

Jones also develops a translation-based semantics for overloaded expressions,

generalizing the approach of Wadler and Blott. As he treats predicates abstractly,

he also introduces a notion of evidence, an abstraction of the implementation of

predicates. Different forms of predicates give rise to different forms of evidence;

for example, type classes might use dictionaries as evidence, as in the Wadler

and Blott system, while evidence for record predicates might correspond to offsets

19

into underlying data structures. As his type system is independent of the form of

predicates, so his translation is independent of the form of evidence. His semantics

is based on a translation to a typed lambda calculus with explicit introduction and

elimination of evidence values, and a version of the entailment relation annotated

to compute evidence.

One consequence of any instantiation of Jones’s system of qualified types, in-

cluding type classes, is that part of the semantics of programs is determined au-

tomatically by the compiler, based solely on the typing derivations of expressions.

We would hope that, just as each of an expression’s principal qualified types de-

scribes the same collection of types, each distinct translation of the expression has

the same meaning. Jones refers to this property as the coherence of the transla-

tion. In some cases, we cannot hope to have a coherent translation. For example,

the Haskell report defines classes Show and Read for converting values to and from

textual representations, including class methods with the types

show :: Show t ⇒ t → String

read :: Read t ⇒ String → t

Given these functions, the expression show ◦ read has type

(Show t, Read t) ⇒ String → String

where the type parameter t in the Show and Read predicates does not appear in

the type of the expression. Such types are called ambiguous, as, in the translation

of an expression with an ambiguous type, the choice of dictionaries is necessarily

arbitrary. Jones shows that, assuming a constraint on the entailment relation

he calls uniqueness of evidence, the translations of expressions with unambiguous

types in his semantics are coherent.

Jones’s system is a natural foundation for our work on type classes: it allows us

to focus on the class predicates and their manipulation, without having to simul-

taneously address the concerns of typing and type inference. His approach makes

20

some assumptions of the entailment relation, such as uniqueness of evidence; we

shall thus have to demonstrate that our entailment relation meets those assump-

tions. We will give a more formal recounting of the types and terms of OML when

we discuss the semantics of overloading in Chapter 5; while we assume his type

system, our semantics is not based on translation.

2.4 EXTENSIONS OF TYPE CLASSES

We conclude this background material by discussing several commonly used ex-

tensions to the Haskell class system: multi-parameter type classes, functional de-

pendencies, and overlapping instances. We have two purposes in doing so. First,

multi-parameter type classes and functional dependencies are both central to the

Habit class system, and will appear regularly in the remainder of the dissertation.

Second, the discussion of functional dependencies and overlapping instances will

demonstrate applications of the notions of principal satisfiable types and coherence,

described in the previous section.

2.4.1 Multi-Parameter Type Classes

Although Wadler and Blott [70] focussed on type classes with a single parameter

(corresponding to sets of types with associated operators), they proposed that type

classes could also apply to more than one parameter. They gave the example of a

class to capture valid coercions between types; for example:

class Coerce a b

where coerce :: a → b

instance Coerce Int Float

where coerce = fromIntegral

instance Coerce a b ⇒ Coerce [a] [b]

where coerce = map coerce

21

Just as single-parameter type classes can be interpreted as sets of types, multi-

parameter type classes can be interpreted as relations on types (i.e., sets of tuples

of types). From the instances above, we would expect Coerce to include the

following subset of Type × Type

{〈Int ,Float〉, 〈[Int], [Float]〉, . . . },

where we write type tuples with angle brackets to distinguish them from the tuple

type constructor.

2.4.2 Functional Dependencies

Despite their conceptual simplicity, many anticipated uses of multi-parameter type

classes were problematic. For example [32], we might hope to use a type class to

capture the relationship between collection types c and their element types e:

class Elems c e

where empty :: c

insert :: e → c → c

elem :: e → c → Bool

(A fully-featured collections class might have many more methods; however, these

are sufficient for our purposes.) This class might be populated for lists:

instance Eq t ⇒ Elems [t] t where . . .

and could similarly be populated for binary search trees:

instance Ord t ⇒ Elems (BTree t) t where . . .

Binary search trees need an ordering on their key type; in this case, that require-

ment is captured by the Ord qualification, which provides an (overloaded) (<)

operator.

Unfortunately, any attempt to use this class will be problematic. One problem

can be observed in the type of the empty method:

22

empty :: Elems c e ⇒ c

The type of empty is ambiguous: any attempt to discharge this predicate would

require an arbitrary choice by the compiler as to the instantiation of e, and thus

the evidence for the predicate Elems c e. As expressions containing empty cannot

have a coherent translation, the compiler will reject its definition.

A further problem can be demonstrated with the insert function. Using it,

we could write the following function

insert2 c = insert True (insert 'x' c)

to insert both the Boolean constant True and the character constant 'x' into the

collection c. This function has the type:

insert2 :: (Elems c Bool, Elems c Char) ⇒ c → c

Neither our examples of lists nor binary trees support this kind of usage. We

will describe a well-typed heterogenous collection later (§3.2.2); however, its types

would not fit the pattern required by the Elems class. Thus, while not erroneous

given the current definitions, this constraint is likely to be unsatisfiable.

Both of these problems might be resolved if we restricted the Elems class to

homogeneous collections. We could then observe that the type of empty is not truly

ambiguous, as the type of the collection is specified and thus the type of elements

is determined, and that insert2 is an error, as it would require a collection type

with distinct element types, an unsatisfiable constraint.

To restrict the Elems class to homogeneous collections, we must require that,

for any type τ , there be at most one type τ ′ such that the predicate Elems τ τ ′

holds. This is an example of a functional dependency [40]. Functional dependencies

are properties of a relation; the Elem class as populated by the prior instance has

such a dependency. However, as Haskell type classes are open, we cannot be

sure that future instances will preserve the dependency. Jones proposed adding

functional dependency constraints to classes, such that all instances of that class

23

were required to maintain certain dependencies [32]. For example, we could add a

functional dependency constraint to the Elems class:

class Elems c e | c → e

This constraint plays two roles. First, it requires that all instances of the Elems

class maintain the functional dependency. For example, given the instances earlier,

it would be an error to add an instance such as the following

instance Elems [Int] Char

where . . .

as there would be two element types (Int and Char) associated with the collection

type [Int]. Second, it provides additional information about the satisfiability

of Elems constraints, addressing the concerns with the earlier uses of the Elems

class. In the case of empty, it allows the compiler to conclude that, for any type

c, there is at most one type such that Elems c e is satisfiable, with one evidence

value for Elems c e, and thus that the type of empty, Elems c e ⇒ c is not truly

ambiguous. In the case of insert2, it allows the compiler to determine that the

constraints Elems c Bool and Elems c Char could only be satisfied if Bool and

Char where the same type; instead, because they are distinct, the compiler rejects

this definition.

2.4.3 Overlapping Instances

Two instances overlap if they could apply to the same predicate. For example,

consider a type class C with the following instances:

instance C (a, [b]) where . . .

instance C ([a], b) where . . .

These instances overlap: either could be used to solve predicates like C ([Int], [Int]).

However, the compiler has no guarantee that the class methods are implemented

24

equivalently for both instances—that is, there is no guarantee that the evidence for

C ([Int], [Int]) is unique—and so a program with both instances may have multiple,

distinct interpretations. To avoid this kind of (potential) incoherence, Haskell 98

prohibits any overlap between instances.

This restriction is sometimes inconvenient. For one example, the Show class in

the Haskell standard libraries includes types whose values have a textual represen-

tation:

class Show t

where show :: t → String

. . .

Conventionally, show generates the Haskell syntax for its argument. For example,

Haskell’s syntax for lists surrounds the elements with brackets and separates them

with commas. We could write a Show instance for lists that used this syntax:

instance Show t ⇒ Show [t]

where show xs = "[" ++ intercalate "," (map show xs) ++ "]"

In addition to its standard syntax for lists, Haskell has special syntax to allow lists

of characters to be written as character strings, delimited by double quotes. We

might like to add a special instance of Show to handle this case, as in this simplified

example:

instance Show [Char]

where show xs = "\"" ++ xs ++ "\""

These two instances overlap: a [Char] value could be rendered either as a list or

as a string. As a result, a program containing both instances would be rejected by

a Haskell compiler.

Popular Haskell compilers have long supported language extensions that allows

overlapping instances, as long as the instances can be ordered by specificity [26, 50].

25

This extension attempts to allow programmers to provide both general and type-

specific instances, such as in the Show example above. We can specify this extension

as follows. Given two instances for some class D:

instance P1 ⇒ D τi where . . .

instance P2 ⇒ D υi where . . .

these instances overlap if there is some instantiation of the variables in the τi such

that the equal an instantiation of the variables in the υi . The first instance is

more specific than the second if the τi can be instantiated to match the υi , but

not vice versa. In the example instances of C given at the start of the section,

both instances overlap, but neither is more specific than the other. Both are more

specific than the instance

instance C (a, b) where . . .

and less specific than the instance

instance C ([a], [b]) where . . .

In resolving any individual predicate, the compiler chooses the most specific in-

stance such that the instance conclusion unifies with the goal predicate. Note that

the contexts (P1 and P2 above) do not factor into this determination; if the most

specific instance does not solve the predicate, the compiler does not attempt to

use less specific instances.

While the overlapping instances extension has a long history of use in the

Haskell community, it is (despite the prior paragraphs) still mostly unspecified.

This has two effects. First, different compilers implement the extension differently.

For example, Hugs requires that any pair of overlapping instances be orderable by

specificity; in contrast, GHC only requires that overlapping instances be orderable

at predicates used in the program. Thus, GHC would accept a set of instances like

instance C (a, b) where . . .

26

instance C ([a], b) where . . .

instance C (a, [b]) where . . .

and only indicate an error if the programmer used a predicate of the form

C ([t], [u]). Hugs, on the other hand, would reject the program because of

the overlap between the second two instances, regardless of the predicates that ap-

peared in the remainder of the program. Second, the interaction of the overlapping

instances extension with other class system features is unspecified, or unsupported.

For instance, the Haskell report specifies a simplification process, called context re-

duction, that attempts to reduce the complexity of inferred predicates [49, §4.5.3].

Given the instance of Show for lists above, for example, context reduction would

simplify the predicate Show [t] to Show t. However, in the presence of overlap-

ping instances, this simplification may not be sound, as there can be instances of

Show [t] that do not correspond to instances of Show t. For another example,

Hugs does not take the overlapping instances extension into account when validat-

ing instances against functional dependency constraints. While GHC continues to

support overlapping instances, it does not support overlap in indexed type families

(a feature for type-level programming), as such overlaps could introduce soundness

issues.

2.4.4 The Coherence Problem

Despite their practical utility, we argue that, to be useful, overlapping instances

must rely on an incoherent translation; this reliance, in turn, can be used to gen-

erate apparently nonsensical behavior. Thus, we believe that even if the problems

of specification mentioned in the previous section could be resolved, overlapping

instances would remain problematic in Haskell, or Haskell-like languages.

Suppose that we had a class with a generic instance, such as the following.

module A where

27

class C t where f :: t → Int

instance C a where f _ = 0

Our intention is that this instance provides a default implementation of method f,

while allowing its behavior to be refined at specific types. Consider the following

declaration, located in the same module as the class definition:

module A where

. . .

g :: Char → Int

g = f

Ought this definition type check? It seems like it must: context reduction requires

that the constraint C Int, introduced by the use of class method f, be discharged,

and there is a most specific instance that solves it. However, now consider a second

module, as follows:

module B where

import A

instance C Char where f _ = 1

b = f 'c' == g 'c'

The programmer may be surprised to discover that b is False. Simple equational

reasoning would suggest that, as g is defined to be f, b amounts to the expression

f 'c' == f 'c', which is surely True. However, this interpretation fails to take

account of the overlapping instances. In module A, where g is defined, the only

instance of C, and thus only implementation of f, is the generic one. However, in

module B, a second, more specific instance of C is available, and thus a different

implementation of f is chosen.

We argue that this problem is unavoidable. First, this pattern is essential

to overlapping instances: if the generic instance was not chosen to resolve some

28

predicates, it would serve no use in the program. For translations using the generic

instance to be coherent, it is not sufficient that there be no more specific instance

at the expression itself; such a criterion is met in both definitions above. Instead,

there must be no more specific instance at any use of the expression. However,

this condition cannot be met: Haskell provides no mechanism for a module to

constrain the instances of the modules that include it. Thus, any successful use of

overlapping instances must depend on the incoherent selection of generic instances.

29

3. PROGRAMMING WITH INSTANCE CHAINS

In the previous chapter, we argued that some popular extensions of the Haskell class

system are problematic: in particular, we identified coherence issues with overlap-

ping instances and implementation divergence with both functional dependencies

and overlapping instances. Despite these challenges, however, these features are

central to many interesting examples of type-class programming in Haskell. One

goal of Habit is to preserve and expand the scope and capabilities of Haskell-like

type-class programming, while simplifying the underlying model of classes, and

avoiding the problems encountered with Haskell type classes. To this end, we have

developed a set of language features, collectively termed instance chains, that pro-

vide for many of the uses of overlapping instances, and extend the possibilities of

type-class programming. This chapter describes the process that led to the design

of instance chains, and demonstrates their use in type-level programming. We will

discuss their semantics and the practical issues of implementing instance chains

more fully in subsequent chapters.

This chapter begins with a survey of type-class programming in Haskell, draw-

ing from the type class literature and from Hackage, a public repository of Haskell

libraries and applications. We present data on the use of overlapping instances

(§3.1), and describe several common type-class programming techniques (§3.2). We

describe the language features of instance chains, and relate them to the results of

our survey (§3.3). Finally, we work through an in-depth case study, demonstrating

the use of instance chains to implement extensible data types (§3.4).

30

3.1 OVERLAPPING INSTANCES IN PRACTICE

Many of the problems with overlapping instances result from the open-ended na-

ture of overlap: as any non-ground instance could, potentially, be overlapped by

another instance elsewhere in the program, it becomes impossible to reason about

the meaning of program components in isolation. Thus, we were curious about

how important this open-endedness is to programs that depend on overlapping

instances.

To help answer this question, in 2009, we surveyed the frequency and uses of

overlapping instances in Hackage1, a large online repository of Haskell libraries

and applications. Our survey is distinguished from the folklore and informal input

that often guide language design efforts both by being based on a large code library

and by having an infrastructure to automate data collection. As much as possible,

we reused the Hackage infrastructure to simplify the mechanics of the survey.

In particular, we used and extended GHC [14] and cabal-install [20], a tool

to download and install packages (and their dependencies) automatically from

Hackage. We hoped to answer the following questions:

� How significant are overlapping instances in practice? In particular, how

many of the projects on Hackage use overlapping instances?

� What are common syntactic patterns in the use of overlapping instances?

How many instances overlap each other? Are these instances contained in

the same module? The same package?

� What are common semantic patterns in the use of overlapping instances?

What problems do programmers rely on overlapping instances to solve?

In turn, we expected that the answers to these questions would inform the design of

1http://hackage.haskell.org

31

instance chains, with which we hoped to capture the uses of overlapping instances,

but to avoid their semantic difficulties.

The remainder of this section describes Hackage (§3.1.1), reviews the methodol-

ogy of our survey (§3.1.2), and summarizes our results (§3.1.3). Finally, we address

whether an alternative methodology, based on package metadata instead of com-

piler instrumentation, could have produced comparable results with significantly

less effort (§3.1.4).

3.1.1 Hackage

Hackage is a large, online repository of Haskell libraries and applications. It orga-

nizes Haskell code into packages, each of which consists of a collection of source

files along with a metadata file called a .cabal file. Each .cabal file contains

the name and version of the package and the names and version ranges of the

package’s dependencies, and may optionally contain preferred optimization and

profiling settings, language extensions used within the package, and compiler flags

specified directly. The build and dependency information can, in turn, vary de-

pending on the local configuration and available libraries. The .cabal file options

also include ways to activate a number of standard Haskell preprocessors; however,

unlike Makefiles, they cannot specify arbitrary additional tools or further modify

the build process.

In addition to the online repository of packages, there are several other tools in

the Hackage infrastructure. Among those most relevant to this work are Cabal (the

“Common Architecture for Building Applications and Libraries”) [1], which defines

a library for building packages based on their .cabal files; and cabal-install, a

tool for automatically downloading and installing packages and their dependencies.

While Cabal provides limited support for other Haskell compilers, such as Hugs,

NHC and JHC, the majority of the language extensions that Cabal recognizes are

only supported by GHC. Therefore, we used GHC for our survey and will restrict

32

our attention to it for the remainder of this section.

3.1.2 Methodology

Our goal was to collect usage information on overlapping instances for as many of

the packages on Hackage as possible. We hoped this would give us both an idea of

how frequently Haskell programmers used overlapping instances, and a catalog of

how they are used. In turn, these results would drive the design of the Habit class

system.

We divided the survey into two stages: first, to find which packages use over-

lapping instances; and second, to identify the overlapping instances within each of

those packages. While it would be possible to examine source code for overlapping

instances by hand, this process would be vulnerable to human error and would be-

come impractical for larger numbers of packages. Instead, we instrumented GHC

to detect overlapping instances and to output information about the location of

each such instance as it was encountered. We then attempted to build as many

packages from Hackage as possible and collected the output of our instrumentation.

This section describes our approach and evaluates its effectiveness.

Determining package sets

The Hackage infrastructure requires that any set of packages that it installs includes

at most one version of each package [3]; unfortunately, because different packages

on Hackage have conflicting requirements, this means that installing all of Hackage

at once is not possible. Therefore, our first task was to determine the largest set

of packages to check for overlapping instances.

To find such a set, we were inspired by Duncan Coutts’ description of using

Hackage for regression testing [4]. First, we used cabal-install to generate a

list of all available packages. We then attempted a dry run of installing those

packages. Predictably, cabal-install detected conflicting version requirements.

33

At this point, our approach differed slightly from that described by Coutts. Rather

than attempting to restrict the selection of packages to get a close to optimal choice,

we moved conflicting packages to a separate package list. As a consequence, we

had a number of package sets, each internally consistent but inconsistent with all

of the other sets.

This approach was moderately effective. Our initial package list included 1195

packages. From this, we constructed five package lists: the first contained 992

packages, and the remaining four included 139 more. This left 64 packages (5% of

the total) that we made no attempt to install, because:

� They required C libraries or a version of GHC not available on our survey

machine;

� They had internally inconsistent dependency requirements; or,

� They depended on packages that we were not attempting to install.

While our approach is simple to describe, filtering incompatible packages out

of packages lists can be time consuming. In particular, if a given package is incom-

patible with a list, not only that package but all packages dependent on it must

be removed from the list. To assist with this operation, we developed rudimentary

support for tracing reverse dependencies through the Hackage database. Similar

functionality is now independently available [66].

Instrumenting GHC

Our next task was to instrument the compiler to announce overlapping instances.

By doing so, we avoided time-consuming and error-prone manual inspection of

Haskell source code.

As described in Section 2.4.3, GHC orders overlapping instances by specificity

when attempting to resolve a predicate and emits an error if the applicable in-

stances cannot be so ordered. Thus, predicate resolution might seem like an

34

ideal location for our instrumentation; however, the same set of overlapping in-

stances might be detected numerous times, while other sets of overlapping in-

stances might never be detected because no predicate required their use. Instead,

we instrumented GHC’s instance validation process. When validating instances,

GHC checks that each new instance does not duplicate an instance it has already

encountered. To do so, GHC computes all the instances that unify with the new

instance. This corresponds precisely to the list of overlapping instances, so we

added code to the duplicate instance check to output that list.

This check detects overlaps that are otherwise irrelevant to the compilation

process. For example, consider the following overlapping instances:

instance C (a, [b])

instance C ([a], b)

Our overlap detection would output this set of instances. On the other hand,

GHC will not check that it can order these instances until it attempts to resolve

a predicate of the form C ([a], [b]). In fact, as long as a program does not

require GHC to resolve a predicate of that form, it would not even need to enable

overlapping instance support. On the other hand, because of the open-world nature

of Haskell models, and as one of the options we were considering for Habit was

a strict limitation on overlap akin to that implemented by Hugs, we were still

interested in detecting this sort of unused overlap.

Collecting Results

Having identified consistent sets of packages and constructed an instrumented com-

piler, we were ready to generate our survey data. Following the technique described

by Coutts, we compiled each set of packages independently. While we cannot

avoid installing packages—a package can only be built if all of its dependencies are

installed—we were able to use cabal-install’s existing functionality to ensure

35

that each set of packages was installed to a distinct location and used a distinct

local package database. As a result, the packages installed in one package set were

not visible when building any other package set, and each of the sets could be built

without conflicting with any other set.

Unlike Coutts’ regression tests, we were interested in more information than

whether each package compiled successfully; we also needed the overlapping in-

stance information emitted during compilation. This meant that we had to extract

the survey results manually from the build logs of each package, instead of being

able to use the build reports that cabal-install generates automatically. Luck-

ily, our output strings were easily identified by regular expression matching, so

collecting the overlapping instances from the different package sets was relatively

easy.

Alternatively, in the process of instrumenting GHC, it would have been possible

to output the information that we collected to particular files, possibly specified

by a command line option; this would have eliminated the need for the regular

expression pass over the build output. We did not take this step in performing our

survey, as the output of our instrumentation was easy to detect and our changes

to GHC were otherwise quite local.

Evaluation

In this section, we consider the effectiveness of our methodology.

One advantage of our approach is that it required relatively little new code.

While we had to modify the GHC type checker to emit details about overlapping

instances, we were able to make use of the existing structure of the duplicate in-

stance check. In total, we added 10 lines to GHC, not including comments. The

changes to cabal-install to generate reverse dependences were larger—around

140 lines—but were localized to the implementation of a single additional com-

mand.

36

We were also able to achieve decent coverage of Hackage. We attempted to

compile 1131 (95%) of 1195 packages, without making any attempt to repair bro-

ken dependencies manually or to install packages that either depended on absent

C libraries or required non-Cabal build processes. Unfortunately, of these 1131

packages, only 826 packages (73%) built and installed successfully. The primary

cause of build failures was our choice of which compiler to instrument. At the

time that we performed the survey, the latest released version of GHC was 6.10.2,

while the version in development was 6.11.20090330. One significant change from

GHC 6.10 to 6.11 was that GHC’s build system had been retooled and simplified.

After several unexpected build failures using the 6.10 build tools, we decided to

use 6.11 for the survey. While this resolved our build issues, it also had negative

consequences. In addition to the compiler itself, GHC provides several packages,

including the base package that includes the Haskell prelude as well as numerous

primitive operations and basic combinators. GHC 6.11 included both Versions 3

and 4 of the base library, whereas GHC 6.10 had included only Version 3. As

base Version 4 had not yet been released, some packages did not support the

changes that it made, but still had dependencies on base without upper bounds.

Cabal attempted to build these packages using base Version 4, which failed during

compilation.

We believe that these deficiencies would be significantly reduced if the sur-

vey were redone now. The improvements to the build system have been (long

since) incorporated into released versions of GHC, and incompatibilities with ver-

sions of the base library are also reduced by new requirements of Cabal and

cabal-install [65].

A final note is that our methodology seems to be most suited to asking positive

questions, such as “how often are overlapping instances used?” or “how many

packages use GADTs?” because it is possible to identify code implementing these

extensions within the compiler and to introduce local instrumentation at those

37

points. It seems harder to adapt our approach to questions such as “how many

packages only use language features in Haskell 98”, as answering that question

would require establishing that none of a (large) set of extensions are used. Instead

of instrumenting a single point in the compiler, it would be necessary to check

each extension of Haskell 98 and report whether any of them are used, most likely

requiring non-local code changes and data collection.

3.1.3 Results

Of the 826 packages built during our survey, 57 (7%) used at least one overlap-

ping instance. While this may seem like a relatively small proportion of the total

code base, we think this level of usage is not insignificant, given that overlapping

instances are an experimental and somewhat arcane feature of the Haskell type

system.

In the packages that used overlapping instances, we found a total of 445 in-

stances either overlapping or overlapped by other instances. We partitioned these

instances into sets, where each instance in a set overlaps at least one other instance

in the set, and no instances outside the set. The 445 overlapping instances parti-

tion into 123 sets. (Intuitively, imagine a graph with a vertex for each instance,

and an edge between two vertices if their corresponding instances overlap. Our

overlapping sets correspond to connected components in the graph.) We can draw

further conclusions about the use of overlapping instances by examining the sets.

Our first question was how frequently the open-endedness of overlapping in-

stances was necessary in practice. To answer this question, we determined whether

the instances in each set were located in the same module, in different modules

within the same package, or in different packages (Figure 3.1). Out of the 123

sets, 19 included overlapping instances from different modules, and 6 (of those

19) included overlapping instances from different packages. THe majority (104, or

85%) of the sets only included instances from a single module. This suggests that,

38

0 20 40 60 80 100

Different packages

Same package

Same module

Occurrences

Figure 3.1: The vast majority of overlapping instance sets in our survey were in

related source files.

0 10 20 30 40 50 60 70 80

1
2
3
4
5
6
7
8
9

10
22
72

Occurrences

#
In

st
an

ce
s

ov
er

la
p
p
in

g

Figure 3.2: The majority of overlapping instance sets were relatively small.

while applications exist for instances overlapping across modules, most overlapping

instances are defined locally.

We also analyzed the size (number of instances) of each set (Figure 3.2). On

average, each set had 3.6 instances, although 76 (62%) of the sets had only two.

The average is pulled up by several outliers: for example, one set of overlapping

instances contains 72 instances. This resulted from the definition of a new Show

instance:

instance JSON a ⇒ Show a where . . .

that overlapped all other instances of the Show class. (One could argue that this

39

instance is an abuse of the Show class, as its output is in JSON format instead of

the Haskell syntax that most Show instances use.) As a final note, our data includes

one set of overlapping instances containing only one instance; this resulted from

a program containing two different modules, each of which defined exactly the

same instance. As a result, the program in question was rejected by the compiler;

however, because our data was generated simultaneously with compilation, we still

detected the identical instances.

We found these results broadly encouraging: while there are some examples that

make use of the full generality of overlapping instances, many of those we found

involve relatively small numbers of instances in related modules. This suggested

that approaches without the open-ended nature of overlapping instances could

capture many of their usage patterns, while avoiding much of their complexity.

3.1.4 Using CABAL Metadata

The mechanism described in the previous sections may seem overly elaborate,

especially given that support for overlapping instances must be enabled by specific

compiler flags. As compiler flags are listed in .cabal files, it would seem that

most packages that used overlapping instances could be detected by searching the

.cabal files for the relevant compiler options or language extensions [61], and much

of the previous work—particularly that which involved compiling large portions of

Hackage—could have been avoided. There were several technical reasons that

convinced us to take our more labor-intensive approach:

� While .cabal files are one place that language extensions may be speci-

fied, they are not the only place. Individual source files may also specify

language extensions and compiler flags in compiler pragmas. Additionally,

there are multiple ways that users can enable GHC’s support for overlap-

ping instances, including the OverlappingInstances language option, the

40

-XOverlappingInstances compiler flag, or the older -fallow-overlapping-

instances compiler flag.

� The presence of overlapping instance support only enables the definition of

overlapping instances; it does not require them. This means that packages

that declare overlapping instance support may not actually contain any over-

lapping instances.

� Most significantly, GHC only requires that overlapping instance support be

enabled in the module that defines the less specific (overlapped) instances.

For example, consider the example instances for Show from Section 2.4.3:

instance Show t ⇒ Show [t] where . . .

instance Show [Char] where . . .

If these instances were in separate modules (perhaps even in separate pack-

ages), then only the module that contained the Show [t] instance would need

overlapping instance support enabled. As a consequence, while examining

those modules that had overlapping instance support would allow us to de-

tect all instances that could potentially be overlapped, it would not indicate

whether, or how often, any of those instances were actually overlapped.

Having completed the survey, we returned to the question about whether using

the Cabal metadata would be a suitable substitute for building all of Hackage.

Surprisingly, we found that only 13 of the 57 packages that contained overlap-

ping instances declared the corresponding language extension or GHC flag in their

Cabal metadata. However, 59 packages that did not actually contain any overlap-

ping instances included the overlapping instances flag in their metadata. We can

imagine several reasons for this:

� Packages may use overlapping instances to provide default implementations

for new classes without providing any more specific implementations. In this

41

case, the package author would need to enable overlapping instance support,

but our method would only find overlapping instances if there were more

specific implementations elsewhere on Hackage.

� Package authors may use standard .cabal file templates, or may not remove

options from .cabal files when they are no longer applicable.

� Package authors may prefer to use source file language pragmas when par-

ticular features or options are only needed in a portion of an entire package.

3.2 PROGRAMMING WITH TYPE CLASSES

This section provides several examples of the use of overlapping instances and func-

tional dependencies that we found in our survey and in the literature. We discuss

three usage patterns: type functions, illustrated by an implementation of type-level

Peano arithmetic; alternative implementations, illustrated by an implementation

of heterogeneous lists; and, default implementations, as illustrated in the prior dis-

cussion of overlapping instances (§2.4.3). We will return to these examples in the

next section to motivate the corresponding features of instance chains.

3.2.1 Type Functions

This section illustrates the use of type classes to implement type functions, or type-

level computations. To do so, we describe the implementation of several arithmetic

operations at the type level, based on work by Thomas Hallgren [17].

Hallgren begins by defining Peano numbers at the type level (Figure 3.3), in-

cluding types for zero and successor (Line 1) and for Boolean values (Line 2). As

these types will be used only for type-level computation, they have no value-level

constructors. Next, he defines the Lte class to implement the ≤ relation at the

type level (Lines 4-7). Note that, as indicated by the functional dependency, Hall-

gren actually defines the characteristic function of the ≤ relation. This allows him

42

1 data Z; data S n

2 data T; data F

3

4 class Lte m n b | m n → b

5 instance Lte Z (S n) T

6 instance Lte (S n) Z F

7 instance Lte m n b ⇒ Lte (S m) (S n) b

Figure 3.3: Type-level Peano numerals

1 data Nil; data Cons x xs

2

3 class Sort xs ys | xs → ys

4 instance Sort Nil Nil

5 instance (Sort xs ys, Insert x ys zs) ⇒ Sort (Cons x xs) zs

6

7 class Insert x xs ys | x xs → ys

8 instance Insert x Nil (Cons x Nil)

9 instance (Lte x y b, InsertCons b x y ys r) ⇒ Insert x (Cons y ys) r

10

11 class InsertCons b x y xs ys | b x y xs → ys

12 instance InsertCons T x y xs (Cons x (Cons y ys))

13 instance Insert y xs ys ⇒ InsertCons F x y xs (Cons y ys)

Figure 3.4: Type-level insertion sort

more flexibility in using the Lte class, as he can use it to determine either that one

number is less than or equal to another, or that it is greater.

To demonstrate the expressivity of this framework, Hallgren uses the Lte class

43

to define a type-level insertion sort (Figure 3.4). To do so, he begins with a type-

level representation of lists (Line 1). The implementation of sorting is straight-

forward: he provides a base case for empty lists (Line 4), and an inductive case

(Line 5) that, given a non-empty list, sorts the remainder of the list and inserts

the head element into the sorted list. The implementation of insertion (Lines 7-13)

is not as simple. In particular, Hallgren defines insertion using two classes: the

conditional behavior (depending on whether the element being inserted is less than

the head of the list) is factored into its own class, InsertCons. It might seem more

obvious to combine Insert and InsertCons into one definition, such as:

1 class Insert x xs ys | x xs → ys

2 instance Insert x Nil (Cons x Nil)

3 instance Lte x y T ⇒

4 Insert x (Cons y ys) (Cons x (Cons y ys))

5 instance (Lte x y F, Insert x ys zs) ⇒

6 Insert x (Cons y ys) (Cons y zs)

However, these instances would not be accepted by the compiler. Although we

can see intuitively that the instances at Lines 3 and 4-5 cannot both apply to the

same x, y and ys—as that would require both Lte x y T and Lte x y F to hold,

violating the functional dependency on Lte—the overlapping instances extension

only makes use of syntactic relationships between instances. In this case, the latter

two instances for Insert fail to present such a syntactic relationship, and so would

be rejected.

Hallgren reports that the Haskell implementation that he was using (Hugs 98)

did not discharge the type constraints in uses of his insertion sort example. How-

ever, his instances work without modification in our compiler.

Another useful operation on Peano numbers is the greatest common divisor;

for example, work on typing low-level data structures in Haskell has relied on a

44

1 class Subt m n p | m n → p

2 instance Subt Z n Z

3 instance Subt m Z m

4 instance Subt m n (S p) ⇒ Subt m (S n) p

5

6 class Gcd m n p | m n → p

7 instance Gcd m m m

8 instance (Lte n m b, Gcd1 b m n p) ⇒ Gcd m n p

9

10 class Gcd1 b m n p | b m n → p

11 instance (Subt m n m', Gcd m' n p) ⇒ Gcd1 T m n p

12 instance (Subt n m n', Gcd m n' p) ⇒ Gcd1 F m n p

Figure 3.5: Type-level greatest common divisor

type-level GCD operator [7]. Our implementation (Figure 3.5) begins by defining

a (bounded) subtraction operation (Lines 1-4). We can then implement Euclid’s

algorithm (Lines 6-12), again using two classes to handle the conditional. As in

the insertion sort example, the instances in a direct encoding of Euclid’s algorithm

could not introduce incoherence, but would still be rejected by the compiler because

they are not syntactically distinguished by the instance conclusion.

3.2.2 Alternative Implementations

In the previous section, we demonstrated a collection of instances, in which the

choice among instances was based on a type-level computation. In this section, by

contrast, we will demonstrate alternative instances based on the structure of types.

To do so, we will make use of overlapping instances. Our examples are drawn from

a definition of type-safe heterogeneous lists, or h-lists [35]. Unlike standard Haskell

lists, the elements of h-lists do not all have to have the same type. By reflecting

45

1 data Nil = Nil

2 data Cons t ts = t :∗: ts

3

4 x :: Cons Char (Cons Bool Nil)

5 x = 'c' :∗: (True :∗: Nil)

6

7 y :: Cons Bool (Cons Char Nil)

8 y = True :∗: ('c' :∗: Nil)

Figure 3.6: Heterogeneous list types and examples

the types of the elements in the type of the list, type-safe operations over h-lists

can be defined. As the implementation of these operations depends on the types

of their arguments, we will rely on type classes and overlapping instances in their

definition.

Heterogeneous lists are built from the type constructors (:∗:) and Nil. Unlike

the examples in the prior section, these constructors have both type- and value-

level components. Note that the types of the head of the list (t, in Line 2) and the

tail (ts) are reflected in the type of the list. This is demonstrated by the values x

and y, in which the type of the list captures the type of each element of the list.

Finally, we have introduced a distinguished value, Nil, to terminate lists at both

the type and value levels.

Our first goal is to define a function project that projects a value from an h-

list, based on the type of the value. In defining this operation, we want to ensure

that it is only applied to lists that have a value of that type (so that its value is

always defined) and that do not have multiple values of that type (so that there is

no arbitrary choice of which value to project). This operation, for example, might

be the basis of an extensible record system built using h-lists [34].

We can define the project function with two classes: the HasOne class, which

46

1 class HasOne t l where project :: l → t

2 class HasNone t l

3

4 instance HasNone t ts ⇒ HasOne t (Cons t ts)

5 where project (t :∗: _) = t

6

7 instance HasOne t ts ⇒ HasOne t (Cons u ts)

8 where project (_ :∗: ts) = project ts

9

10 class Fail t

11 data TypeExists t

12

13 instance HasNone t Nil

14 instance Fail (TypeExists t) ⇒ HasNone t (Cons t ts)

15 instance HasNone t ts ⇒ HasNone t (Cons u ts)

Figure 3.7: project class and implementation

implements the project operation, and the HasNone operation, which ensures that

the projection is unique (Figure 3.7). The implementation of HasOne is straight-

forward. The first instance (Lines 4-5) covers the case where the goal type is at

the head of the h-list, and does not appear anywhere in the remainder of the list.

The second instance (Lines 7-8) covers the case where the goal type is not at the

head, and does appear in the remainder of the list.

This example illustrates the use of overlapping instances to implement con-

ditionals, and demonstrates several recurring patterns in the use of overlapping

instances.

� First, it may not be obvious how the compiler chooses which instance to

apply. It is not based on position in source code (as in expression-level

47

conditional constructs), nor is it based on some kind of backtracking search

(as in Prolog clauses). Rather, it is based on concluding that the first instance

(Lines 4-5) describes a strictly smaller set of types than the second (Lines 6-

7). A compiler can detect this by attempting to find substitutions such that

the first instance matches the second (that is to say, the first instance can

be instantiated to be syntically identical to the second), and vice versa. The

substitution of t for u is sufficient for the second to match the first. However,

there is no substitution that makes the first match the second. Therefore,

the compiler can conclude that the second is more general, and check it only

if the first does not apply.

� Second, consider the predicate

HasOne Char (Cons Char (Cons Char ()))

It might seem that the second instance would prove this predicate: although

the first instance does not apply (because Char appears in the tail of the list),

there is exactly one Char in the tail of the list. However, a Haskell compiler

will only check one matching instance. Because the predicate matches the

first instance, the compiler will never check the second, and will indicate an

error when the preconditions of the first cannot be met.

� Finally, note that failure conditions (the type either appearing no, or multi-

ple, times) are implicit. It would be possible for a programmer to add new

instances of HasOne, inadvertently changing its behavior.

Next, we discuss the HasNone predicate. As this class is only used as a pre-

condition for instances, it does not need any member functions. Its definition is

structurally similar to that of HasOne: there is an instance for the base case (Line

13), one for the case where the goal matches the head of the list (Line 14), and

one for the case where they differ (Line 15). However, the implementation of the

48

1 class Remove t ts us | t ts → us where remove :: ts → us

2

3 instance Remove t Nil Nil

4 where remove Nil = Nil

5 instance Remove t ts us ⇒ Remove t (Cons t ts) us

6 where remove (_ :∗: ts) = remove ts

7 instance Remove t ts us ⇒ Remove t (Cons u ts) us

8 where remove (u :∗: ts) = u :∗: remove ts

Figure 3.8: Removing elements of a particular type from an h-list

matching instance (Line 14) is complicated. Intuitively, HasNone should not hold

in this case; however, we cannot omit the case, as the final instance (Line 15) is

general enough to include it. Instead, the original authors relied on creating a con-

text that cannot be satisfied—in this case, the predicate Fail (TypeExists t),

named to give some indication as to the reason for the unsatisfiable predicate. Of

course, were the Fail class and TypeExists types accessible outside the definition

of this instance, a new instance satisfying Fail (TypeExists t) could be added.

Thus, either the class or the type must be hidden using an additional mechanism,

such as the Haskell module system.

This technique for encoding choice can be combined with the type-level compu-

tation mechanism from the previous section. For example, in defining an operation

that removes all elements of a type from an h-list, we must compute not only the

resulting list, but also its type (Figure 3.8). This example illustrates the difficul-

ties introduced by the interaction of class system extensions: both GHC and Hugs

claim that these instances violate the functional dependency constraint on class

Remove (showing that their implementation of functional dependencies does not

take overlapping instance resolution into account).

This section has demonstrated that overlapping instances provide a powerful

49

technique for encoding alternative instances. However, we believe that this tech-

nique is also fragile: the intention of the programmer is (somewhat) obscured, and

the method does not easily scale to more than two or three alternatives. This

technique does not require open-ended overlapping instances; indeed, it would be

surprising, and likely incorrect, were a user to add additional instances to one of

the h-list classes. As a consequence, the instances are usually also syntactically

grouped.

3.2.3 Default Implementations

Overlapping instances can also be used to provide default implementations for

complex behavior, based on other pre-existing classes or other assumptions; this

is arguably the purpose for which they were originally intended. We have already

shown one such example (§2.4.3) in which we provided generic behavior for showing

lists and specific behavior for showing lists of characters. Further examples of this

pattern are quite common in generics and serialization packages—for example, the

EMGM package [22] uses overlapping instances to provide default implementations

that reduce the burden of writing new generic functions. However, this is precisely

the usage that relies upon incoherent instance selection (§2.4.4).

It is sometimes unclear whether a given set of instances are intended to imple-

ment alternatives, as in the prior section, or to provide a default implementation

along with several specific implementations. For example, the following instances

appear in the monad transformer library [30], as implemented in the mmtl package:

instance MonadState s (State s) where . . .

instance (MonadTrans t, Monad (t (State s)))

⇒ MonadState s (t (State s)) where . . .

There are two ways we could interpret these instances:

50

� Any state monad should include the State type. This pair of instances

provides a complete implementation of the MonadState class.

� The State type provides one way, but not the only way, to implement state

monads. This pair of instances is not the complete implementation of the

MonadState class.

It is not clear from the code which of these interpretations is intended.

3.3 DESIGN OF THE HABIT CLASS SYSTEM

In designing the Habit class system, our goal was to support, and expand upon,

the overloading and type-level programming possible with the Haskell class system,

while avoiding the semantic complexities introduced by some of its extensions. We

began with a Haskell-style class system, extended with functional dependencies.

However, we were reluctant to support overlapping instances: while our survey

suggested that while many interesting examples of type-level programming used

overlapping instances, the extension itself is poorly defined, theoretically problem-

atic, and not well suited to many of its uses. Instead, we attempted to develop

and define new language features that: would better support the majority of the

uses of overlapping instances; would interact well with other class system features;

and, would avoid the problems introduced by the inferred ordering and open-ended

nature of the overlapping instances extension.

To that end, we developed three new class system features, which we refer to

collectively as instance chains. These features are:

� Alternative clauses, allowing programmer-specified ordering of instances;

� Exclusion, allowing programmers to both assert that and test whether par-

ticular types are excluded from classes; and,

51

Type ::= . . . | ClassName {Type}

Pred ::= ClassName Type {Type} [= Type] [fails]

Class ::= class ClassName TyVar {TyVar} [= TyVar]

[| Constraint {, Constraint }]

[where Decls]

Constraint ::= Pred

| {TyVar} → {TyVar}

Clause ::= Pred [if Pred {, Pred}] [where Decls]

Chain ::= instance Clause {else Clause}

Figure 3.9: Concrete syntax of Habit predicates, classes, and instances

� Backtracking search, providing a more flexible mechanism for instance selec-

tion consistent with the logical interpretation of instances.

We believe that these features are both more expressive and easier to understand

that overlapping instances. In the remainder of this section, we will discuss the

syntax of Habit predicates and classes and describe each of the features in detail.

In particular, we will show that these features naturally express the type function

and alternatives patterns that we identified in the previous section. Finally, we

will conclude this section by discussing one approach to providing default imple-

mentations in Habit.

3.3.1 Habit Class System Syntax

The Habit class system incorporates a number of new syntactic features, including

those necessary to support instance chains, as well as features designed to simplify

and improve the use of functional dependencies, and to clarify the meaning of

class and instance declarations. The surface syntax for Habit predicates, classes,

and instances is given in Figure 3.9, excerpted, with some simplification, from

52

the Habit language report [51]. Non-terminals are indicated by initial capitals,

optional elements are surrounded by brackets, and optional repeatable elements

are surrounded by braces. The Habit syntax differs from that of Haskell as follows:

� Predicates can be negated by appending the keyword fails; that is, if a

predicate C ~τ is satisfied by proving that the tuple of types ~τ is an instance

of class C , then a predicate C ~τ fails is satisfied by proving that the tuple of

types ~τ is not an instance of C .

� Habit provides functional notation [7, 33], improving the notation for func-

tionally determined types. In particular, if the final type τn in a predicate

C τ1 . . . τn is functionally determined, then (a) its predicates may be written

C τ1 . . . τn−1 = τn , and (b) C τ1 . . . τn−1 may be written as a type, represent-

ing the unique type τn such that the predicate C τ1 . . . τn holds.

� Habit syntax treats superclass constraints and functional dependency con-

straints uniformly. The Haskell syntax for superclass constraints is mislead-

ing: it suggests that the superclass constraints imply class membership, when

really they are implied by class membership.

� Habit reverses the order of the instance hypotheses and conclusion; this draws

emphasis to the instance being defined, as it appears first in the declaration.

� Habit allows multiple instance clauses to be chained together using the else

keyword, providing a method for programmer specification of instance order-

ing.

Combined, these features can give Habit class and instance declarations a more

functional feel than the equivalent Haskell declarations. For example, the Haskell

instance declaration:

instance (Lte n m T, Subt m n m', Gcd m' n p) ⇒ Gcd m n p

53

such as might be used in a direct encoding of Euclid’s algorithm (§3.2.1), can be

written in Habit as:

instance Gcd m n = Gcd (Subt m n) n if Lte n m = T

There are some syntactic restrictions on Habit predicates and classes not captured

in the syntax, such as:

� All clauses in a chain must be for the same class;

� Clauses asserting fails predicates must not provide method implementa-

tions; and,

� The use of = in predicates is not allowed if the last parameter is not deter-

mined.

We will use Habit syntax for the remainder of this document. However, with the

exception of features specifically necessary for instance chains (the fails keyword

in predicates and else keyword in instance declarations), none of our work depends

on these changes to language syntax.

3.3.2 Alternative clauses

Many of the examples that we collected (§3.1) use overlapping instances to im-

plement choice among instances. We have argued that this encoding is fragile: it

relies on an inferred ordering between instances, and requires obscure reformula-

tions to express even simple non-syntactic choices, such as in the InsertCons and

Gcd examples (§3.2.1). In contrast, Habit provides a direct means of expressing

alternative instances. Habit classes can be populated by multiple, non-overlapping

instance chains, each of which may contain a number of potentially overlapping

clauses, separated by the keyword else. During instance selection, clauses within

a chain are checked in order; the order in which chains are checked is irrelevant,

as they are not allowed to overlap. Using instance chains allows clearer expression

54

of programmer intentions and simplifies the encoding of algorithms that would be

complex or impossible to express with overlapping instances.

For example, the h-list classes (§3.2.2) relied on the ordering inferred by the

overlapping instances extension. In Habit, these orderings must be made explicit.

For example, the HasOne class can be populated using the following declaration.

instance HasOne t (Cons t ts) if HasNone t ts

where project (t :∗: _) = t

else HasOne t (Cons u ts) if HasOne t ts

where project (_ :∗: ts) = project ts

This clarifies the intention of the programmer. We can also use instance chains

to express instances directly that would require multiple classes in Haskell. For

example, the insertion sort class (§3.2.1) could be coded in Habit:

instance Insert x Nil = Cons x Nil

instance Insert x (Cons y ys) = Cons x (Cons y ys)

if Lte x y = T

else Insert x (Cons y ys) = Cons y (Insert x ys)

if Lte x y = F

The use of an instance chain for the second instance declaration avoids the needs

for the auxiliary InsertCons class, as was required in Haskell. The order of clauses

in the chain is irrelevant: as the hypotheses of the two instances are inconsistent,

there are no predicates to which both could apply. Alternatively, we could have

taken advantage of the ordering to omit the hypothesis on the second clause:

instance Insert x (Cons y ys) = Cons x (Cons y ys)

if Lte x y = T

else Insert x (Cons y ys) = Cons y (Insert x ys)

These examples help motivate the remaining two features of instance chains:

55

� The HasOne class might seem to suffer from the same modularity problems as

overlapping instances: because Haskell type classes are open, HasNone t ts

may not be provable in one module, but provable in other modules in the

same program. Thus, the meaning of a HasOne predicate might seem to

depend on the other instances in scope. This problem is addressed by the

introduction of exclusion (described next): we will distinguish failure to prove

a predicate, which may change depending on instances, from the proof that

a predicate does not hold. In this case, to choose the second clause, it is not

enough that HasNone t ts cannot be proved; instead, HasNone t ts fails

must be proved.

� The two clauses of the Insert instance for non-empty lists are not distin-

guished by syntax: given the functional dependency on Insert, we must

be able to select a clause from the first two parameters. Instead, they are

distinguished by whether the predicate Lte x y = T can be proven. Thus,

instance selection must be based on the provability, not just the syntactic

form, of instance clauses. We implement this via a backtracking search, such

that disproving the hypotheses of a particular clause can result in trying the

next clause in the chain.

3.3.3 Exclusion

As discussed in the previous section, allowing alternatives without introducing

modularity concerns requires a way to distinguish the proof that a predicate can-

not hold from the lack of a proof that it does hold. Additionally, some examples

found in our survey attempt to encode failure in the instance selection process:

for example, the HasNone class (§3.2.2) used a class Fail and type constructor

TypeExists, both hidden using the Haskell module system, to ensure that partic-

ular instances could not hold. While this approach is effective, it is fragile, leads

56

to confusing error messages, and is difficult to use as a building block for more

complex instance schemes.

In Habit, we extend the syntax of predicates to include an optional trailing

keyword fails. As the predicate C ~τ is satsified if types ~τ are in class C , the

predicate C ~τ fails is satisfied if types ~τ cannot be in class C . This provides a

mechanism to invert predicates: the inverse of a predicate C ~τ is C ~τ fails, and the

inverse of C ~τ fails is C ~τ . Predicates of the form C ~τ fails can appear as hypotheses

and conclusions in instance declarations and as qualifiers in type signatures The

presence of such instances introduces the requirement that Habit programs must

be consistent: that is, that it should not be possible to prove both a predicate and

its inverse from the instances in a program.

The HasNone class provides an obvious opportunity for fails predicates; in

Habit, we could populate it by the instances:

instance HasNone t Nil

instance HasNone t (Cons t ts) fails

else HasNone t (Cons u ts) if HasNone t ts

We can also use fails predicates to simplify classes that might otherwise have relied

on type functions. For example, Hallgren’s Gte class (§3.2.1) actually defines the

characteristic function of the ≤ relation rather than defining the ≤ relation itself.

This allows Hallgren to use both the ≤ relation and its inverse. We can do this

directly in Habit:

class Lte m n

instance Lte Z n

instance Lte (S m) (S n) if Lte m n

else Lte (S m) n fails

The uses of the Lte class would be updated similarly. For example, the Gcd class

could be defined:

57

1 instance Gcd m m = m

2 else Gcd m n = Gcd (Subt m n) n if Lte n m

3 else Gcd m n = Gcd m (Subt n m) if Lte n m fails

As in the Insert example above, the clauses at Lines 2 and 3 could be presented

in the opposite order. We could omit the final hypotheses (Line 3) as well; even

if we did so, the Gcd relation’s meaning depends on proving that inverse of the

Lte m n predicate at Line 3.

Another use of explicit failure is in the definition of closed classes. For example,

the AES cryptographic standard provides for keys of three possible lengths, either

128, 192, or 256 bits long. To abstract over the key length in their definitions,

the crypto package [60], an implementation of various cryptographic primitives

in Haskell, defined a class AESKey and instances for types Word128, Word192, and

Word256. To assure that these were the only instances of the AESKeyLength class,

the package authors hid the class using the module system. An unfortunate conse-

quence is that users of the package could not write down the signatures of functions

that used the AESKey class, such as

AESKey a ⇒ a → ByteString → ByteString

as the AESKey class itself was hidden. In Habit, we might similarly define a specific

class to capture AES key lengths, and use a fails instance to close this class

without hiding it.

class AESKeyLength n

instance AESKeyLength 128

else AESKeyLength 192

else AESKeyLength 256

else AESKeyLength t fails

No other instances of AESKeyLength could be added to the program, as they would

overlap with the final clause in the instance. However, this would still allow the

58

use of the AESKeyLength class in predicates, either as type qualifiers or hypotheses

of other instances.

Note that fails instances are not the only mechanism for proving that a Habit

predicate does not hold. Functional dependencies can also rule out predicates. For

example, in a predicate Subt m n p (see Figure 3.5, the parameters m and n deter-

mine parameter p. Thus, if we can prove some particular instance of Subt m n p—

such as Subt 3 1 2—we can also prove Subt m n p' fails for all types p' dis-

tinct from p—such as Subt 3 1 1 fails or Subt 3 1 4 fails. This is not new

to Habit; however, we believe that ours is the first class system that makes use of

these inferred exclusions in predicate simplification.

3.3.4 Backtracking Search

The Haskell instance search mechanism never backtracks. This is reasonable be-

cause the Haskell standard requires that no two instance conclusions in a given

program unify. As a result, no predicate could be solved by more than one in-

stance. However, this significantly complicates reasoning about overlapping in-

stances. Even if an instance could apply to a predicate, it will not be checked

if a more specific instance exists anywhere in the program, and failure to prove

the preconditions of the most specific instance causes instance search to fail rather

than to attempt to use less specific instances. This behavior is essential to some

uses of overlapping instances: for example, the proper behavior of the HasOne and

HasNone classes (§3.2.2) depends on the Haskell compiler only checking the most

specific instance.

Habit instance search backtracks when it can disprove the precondition of an

instance (either because of a fails clause or because of a functional dependency).

This allows us to use provability, rather than syntactic matching, to choose be-

tween instances. For example, the Habit prelude includes a class Index n, used to

59

generalize over indexing operations for arrays of length n. Some of these opera-

tions, such as reducing an arbitrary value to a valid index, can be performed more

efficiently if n is a power of 2; thus, the Habit prelude includes an instance chain

instance Index n if 2ˆp = n

where . . .

else Index n

where . . .

Note that there is no syntactic distinction between the two clauses—both apply

to arbitrary types n—and so the choice of a particular clause depends upon the

compiler checking the provability of the constraint 2ˆp = n.

3.3.5 Default Implementations

The features of instance chains are designed to clarify and extend many of the uses

of overlapping instances. However, one of the usage patterns we identified (§3.2)

is conspicuous by its absence: the default implementation pattern that was (ar-

guably) the original intention of overlapping instances. We have argued (§2.4.4)

that the default instances pattern introduces modularity problems that we have

designed instance chains to avoid. This section presents an alternative scheme for

providing default implementations. We do not claim this is necessarily the best

way to provide default implementations in a system with instance chains; how-

ever, it demonstrates that default implementations are still feasible in practice,

even without direct language support.

We return to our earlier example of overlapping instances and modularity con-

cerns (§2.4.4), which provided some default behavior, with overrides for certain

types. To implement this pattern in Habit, we will use two classes, one that in-

dicates whether or not the default behavior is overridden at a given type, and

another that selects between the overridden and default behavior. We show this

60

module A where

class C t where f :: t → Int

class COverride t where foverride :: t → Int

instance C t if COverride t

where f = foverride

else C t

where f _ = 0

x = f 'c'

module B where

import A

instance COverride Char where foverride _ = 2

b = x == f 'c'

Figure 3.10: Instance chains and default implementations

pattern in Figure 3.10. Class COverride is used to provide type-specific overrides

of the default behavior. We can then define and populate class C, providing the

default behavior in cases when it is not overridden. In module A, there is neither an

instance of COverride Char, nor an instance of COverride Char fails; thus, the

constraint C Char arising in the definition of x cannot be discharged. In module

B, where an instance for COverride Char is provided, both x and f 'c' will use

that instance, and b will be True, as we would expect. Alternatively, if an instance

COverride Char fails were added to module A, the conflicting instance in module

B would prevent the program from compiling. There are two inherent complica-

tions in this scheme. First, it introduces the additional override class. Second, to

use the default implementation for a particular instance, it is not sufficient simply

61

not to declare an override instance; the override must be explicitly ruled out by a

fails instance. However, it is this latter complication that avoids the modularity

problems inherent in overlapping instances: it allows the definition of x to use the

default implementation of f only if there can be no overriding instance anywhere

in the program.

3.4 CASE STUDY: EXTENSIBLE DATA TYPES

This section presents a case study in instance chains, using them to define ex-

tensible data types with flexible injection and projection operators. The problem

of extending abstract data types is well known [2, 37, 53]. The formulation we

choose, similar to that of Wadler [69], is to enable both the extension of data types

and the definition of new operations over existing data types, without changing

the meaning of existing code or losing static type safety. The particular data type

we use is a simple abstract syntax tree (AST) for expressions; Wadler called this

version of extensible data types the expression problem.

In addition to being commonly used as a benchmark for the expressiveness

of programming languages, the expression problem illustrates a practical use of

extensible data types. For example, the Habit compiler includes a number of

small passes to desugar various source-level constructs into intermediate repre-

sentations. While conceptually simple, these passes pose a software engineering

dilemma: defining new versions of the AST for each pass would provide static

guarantees of the transformations the passes implement, but would result in an

explosion of similar syntax tree types and a corresponding duplication of utility

functions. Alternatively, using a common representation of the syntax tree results

in later passes having “junk” cases to handle constructs that were (supposedly)

removed earlier in the pipeline. Extensible data types enable a third approach, in-

corporating the advantages of both the first and second approaches, as individual

cases could be eliminated from the type without having to repeat the remaining

62

cases or utility functions.

Our approach to the expression problem is based on existing Haskell approaches

to extensible unions [38, 64], and has three components: a mechanism to define

extensible data types, a mechanism to construct new values of these types, and a

mechanism to use (or deconstruct) values of these types.

� To define new extensible types, we will use a generic coproduct (i.e. disjoint

union) constructor, written (:+:); individual cases will be defined indepen-

dently, using open recursion (or two-level types [58]) for modular treatment

of recursion. For a simplified example, if two cases were implemented by

types A and B, we could construct their coproduct A :+: B

� We must be able to construct values of coproduct types from values of their

component types; for example, we should be able to construct a value of type

A :+: B from values of type A or values of type B. Attempting to use the

constructors of the coproduct type directly is fragile and inextensible; for

example, the function to inject a value of type A into A :+: B is different

from that to inject a value of type A into B :+: A or into (A :+: B) :+: C.

Previous approaches have used type classes to provide a generic injection

operation, but this they have limited the forms of coproducts that can be

used. We will demonstrate more flexible injection functions that do not

restrict the form of coproducts.

� Finally, we must be able to use values of coproduct types. Again, using the

primitive Haskell matching functionality is fragile—as the functions to inject

values of type A into values of types A :+: B and B :+: A differ, so the

case expressions to match values of type A in values of type A :+: B and

B :+: A differ as well. Previous approaches have required that each use of a

coproduct type be defined by a new type class, making the use of coproducts

awkward and verbose. We will demonstrate a flexible projection operator,

63

1 data Const e t = Const t

2 data Sum e t = Plus (e t) (e t) if Num t

3 data Product e t = Times (e t) (e t) if Num t

4 data Conjunction e t = And (e t) (e t) if t == Bool

5 data Disjunction e t = Or (e t) (e t) if t == Bool

6 data Conditional e t = If (e Bool) (e t) (e t)

7

8 data (f :+: g) (e :: ∗ → ∗) (t :: ∗)

9 = Inl (f e t) | Inr (g e t)

10

11 data Expr e t = In (e (Expr e) t)

Figure 3.11: Extensible expression types

allowing the uses of coproduct types to be defined at the value, rather than

at the class, level.

These mechanisms are described in the detail in the following subsections.

3.4.1 Types with Open Recursion

Our first problem is to define the type of expressions. To make this type extensible,

we will declare each case individually, combining different cases with a generic

coproduct constructor, and leaving the type of sub-expressions parametric. Finally,

we will use a fixpoint construction to fix the sub-expression type parameters. The

declarations are given in Figure 3.11; we explain them in the following paragraphs.

We begin by defining the cases of our expression type. We include constructions

for constants (Line 1), numeric expressions (Line 2-3), Boolean expressions (Line

4-5), and conditionals (Line 6). Each construct is parameterized by the result type

t of evaluating the construct, and the type e of subexpressions. In some cases, the

64

result of evaluating an expression is constrained by the expression constructors: for

example, a sum can only evaluate to a numeric type. We capture these constraints

using generalized algebraic data types (GADTs).2 For example, the constraint

on the Plus constructor requires that the type t produced by its subexpressions

be numeric. Similarly, the constraint on the And constructor requires that the

type produced by its subexpressions be Bool. The If constructor requires that its

condition generate a Boolean value. However, as this does not affect the type of

the conditional expression as a whole, we do not need a GADT for this case.

Next, we define the type of coproducts (Line 8), represented by the (:+:) op-

erator. As in the individual constructors, the type of coproducts is parameterized

by a result type t and subexpression type e. In turn, the members of the coproduct

evaluate to the same type, and have the same subexpressions.

Finally, we define a type for expressions (Line 10), given a result type t and an

expression constructor e. The Expr type instantiates the subexpression arguments

of the expression constructors, “tying the knot” of the recursion.

Figure 3.12 includes the definition of several types, using these constructors.

First, we define types NumExpr and BoolExpr, combining the individual construc-

tors of numeric and Boolean expressions. Note that these still have the form of

cases, not of expressions. Next, we define two types of expressions, E1 and E1',

using the Const and NumExpr case types. Note the use of the Expr type to close

the recursion.

3.4.2 Injection

Having defined the types of expressions, we next attempt to define some values of

those types; Figure 3.12 shows a first attempt. We then inject several simple values

into these types: x is a integer constant, and y is the integer expression 1 + 2.

2The syntax we use for GADTs (similar to that of Sheard and Pasalic [59]) uses trailing
constraints, rather than requiring the full type signature of constructors (as in GHC).

65

type NumExpr = Sum :+: Product

type BoolExpr = Conjunction :+: Disjunction

type E1 = Expr (Const :+: NumExpr)

type E1' = Expr (NumExpr :+: Const)

x :: E1 Int

x = In (Inl (Const 1))

y :: E1' Int

y = In (Inl (Inl (Sum (In (Inr (Const 1)))

(In (Inr (Const 2))))))

Figure 3.12: First attempt to define expression values.

Already, we can see that defining these values is becoming unwieldy. In particular,

even though the types E1 and E1' are equivalent (i.e. isomorphic), we can neither

use an E1 value where an E1' value is expected, nor use the same injectors. For

example, the injector for a constant into E1 is In ◦ Inl, but the corresponding

injector for E1' is In ◦ Inr.

We can address some of these difficulties, following Liang et al. [38] and Swier-

stra [64], by using a type class to define an overloaded injection function, as shown

in Figure 3.13. The predicate f :<: g holds if values of types constructed from f

can be injected into types likewise constructed from g. However, difficulties arise

in populating this class. Liang’s instances, also given in the figure, rely on over-

lapping instances: the first instance is more specific than the second, and thus is

checked first. However, these instances can only inject values into types directly

on the left-hand side of the coproduct constructor. For example, they can inject

values of type Const or Sum into type E1, but not values of type Product, and can

66

class f :<: g

where inj :: f (e :: ∗ → ∗) t → g e t

instance f :<: (f :+: g)

where inj = Inl

instance (f :<: h) ⇒ f :<: (g :+: h)

where inj = Inr ◦ inj

Figure 3.13: Overloaded injection function.

only inject values of type NumExpr into type E1'.

Swierstra addresses these difficulties by adding a third instance:

instance f :<: f

where inj = id

With this instance, values of type Product can be injected into type E1, above.

However, this instance does not make type E1' more useful. Further, this instance

overlaps with the second instance in Figure 3.13: either one could apply to a

predicate of the form (t :+: u) :<: (t :+: u). Neither one is more specific

than the other, so the overlapping instances mechanism does not provide a way

to resolve this ambiguity. As a result, Hugs rejects this instance. GHC does not

immediately reject the program, thanks to its lazier approach to detecting overlap;

however, it will indicate a type error should such an ambiguous predicate appear

in the program.

Using instance chains, we can more completely populate the :<: class, as

shown in Figure 3.14. We begin with an identity instance (Lines 1–2); we avoid

the difficulties that occur with Swierstra’s instance, as the instance chain eliminates

ambiguity among clauses. The next two clauses (Lines 3–6) recurse on either side

67

1 instance f :<: f

2 where inj = id

3 else f :<: (g :+: h) if f :<: g

4 where inj = Inl ◦ inj

5 else f :<: (g :+: h) if f :<: h

6 where inj = Inr ◦ inj

7 else f :<: g fails

Figure 3.14: Overloaded injection function with instance chains.

class f :<<: g where inj' :: f (e :: ∗ → ∗) t → g e t

instance f :<<: f

where inj' = id

else f :<<: (g :+: h) if f :<<: g, f :<: h fails

where inj' = Inl ◦ inj'

else f :<<: (g :+: h) if f :<<: h, f :<: g fails

where inj' = Inr ◦ inj'

else f :<<: g fails

Figure 3.15: Stricter version of injection function.

of the coproduct constructor, avoiding the left-biased nature of the approaches of

Swierstra and Liang et al. The final clause closes the class, providing a mechanism

to prove when one type cannot be injected into another, and thus satisfying the

conditions needed to bypass the second and third clauses).

One possible objection to this definition is that it (arbitrarily) chooses the

left-most occurrence of a type in a coproduct. It might be desirable instead to

reject cases where there are multiple, distinct injections for a given type into a

given coproduct. We can define such a “stricter” notion of injection as shown

68

type E1 = Expr (Const :+: NumExpr)

type E2 = Expr ((BoolExpr :+: Const) :+: (Conditional :+: NumExpr))

inj_ x = In (inj x)

x :: E1 Int

x = inj_ (Const 1)

y :: E2 Int

y = inj_ (If (inj_ (And (inj_ (Const True)) (inj_ (Const False))))

(inj_ (Plus (inj_ (Const 1)) (inj_ (Const 2))))

(inj_ (Times (inj_ (Const 2)) (inj_ (Const 3)))))

Figure 3.16: Defining expression values

in Figure 3.15. The instance is structured as before; however, we add additional

side conditions to ensure that, when injecting a type on the left-hand side of a

coproduct, there is no possible (even ambiguous) injection on the right hand side,

and vice versa.

We can now return to the task of defining values of our expression type (Fig-

ure 3.16). As before, we define several expression types; we also define a shorthand

inj_ for the composition of the overloaded injector and the Expr value construc-

tor. Finally, we build several example values. Note that the treatment of different

constructors is uniform, and not dependent on the particular ordering of types in

the coproducts.

In this section, we have demonstrated how instance chains improve upon exist-

ing approaches to coding injectors in Haskell. Our approach is more powerful—that

is to say, handles a greater variety of sum types—without complicating either the

subtyping constraint (:<:) or the use of the injection function inj. Further, we

have demonstrated how the features of instance chains can be used to build a new

notion, the strict injector, on top of the existing notion of injection without having

69

to change or redefine that existing notion.

3.4.3 Projection

The final part of the expression problem is to define extensible functions over the

already-defined extensible types. While it is possible to do so using only existing

features of Haskell, as Swierstra does, this relies on implementing all operations

over sums as type classes themselves. In this section, we take an alternate ap-

proach, inspired by the treatment of extensible variants in TREX, a row-based

record system for Haskell [12, 13]. We define a generic combinator, suitable for

building projections over sum types, and provide two examples of its use, one to

evaluate expressions and one to generate pretty-printed versions.

We begin by defining the projection combinator (?). Intuitively, an expression

m ? n defines a projection operator where m describes its action on one component

of the sum, and n describes its actions on the remainder of the sum. As with the

injection operator, we want to define (?) to work uniformly on isomorphic sum

constructions, regardless of the order and nesting of the components.

Figure 3.17 gives our definition of (?), as the method of a class Without. The

predicate Without t u = v holds if t is a sum containing type u, and v describes

the remaining components of t after removing u. For example, we can show that:

Without (Int :+: Bool) Bool = Int

Without ((Int :+: Char) :+: Bool) Char = Int :+: Bool

This class describes the remainder operated on by the second argument of the

projection combinator; that is, if the expression m ? n operates on a sum f e t,

and m operates on g e t, then n operates on (without f g) e t. We have chosen

to use a strict definition of Without: each component type must appear in the sum

exactly once, and each case must correspond to a component type in the sum. The

clauses at Lines 3-5 and 6-8 define the base cases, each eliminating one of the two

70

1 class Without f g = h

2 where (?) :: (g e t → a) → (h e t → a) → f e t → a

3 instance Without (f :+: g) f = g

4 where (m ? n) (Inl x) = m x

5 (m ? n) (Inr x) = n x

6 else Without (f :+: g) g = f

7 where (m ? n) (Inl x) = n x

8 (m ? n) (Inr x) = m x

9 else Without (f :+: g) h = (Without f h :+: g) if h :<: g fails

10 where (m ? n) (Inl x) = (m ? n ◦ Inl) x

11 (m ? n) (Inr x) = n (Inr x)

12 else Without (f :+: g) h = (f :+: Without g h) if h :<: f fails

13 where (m ? n) (Inl x) = n (Inl x)

14 (m ? n) (Inr x) = (m ? n ◦ Inr) x

Figure 3.17: Overloaded projection combinator

summands. The implementation of (?) in these cases is obvious: the left-hand

argument m is applied to the eliminated component, and the right-hand argument

n to the remaining component. The recursive cases are more complex; we will

describe the left-recursive case (Lines 9-11), as the two cases are mirror images of

each other. First, we use the (:<:) class to ensure that the eliminated type h is

only present on one side of the sum. Second, the argument type of n is no longer

simply one side of the sum, but a reconstructed sum with one fewer component;

thus, the calls to n must be composed with constructors for the new sum type.

Use of the (?) operator is broadly parallel to use of the (:+:) type constructor.

We begin by defining projections for individual types; the evaluation projections

are shown in Figure 3.18. As these cases can be used in multiple sum constructions,

we handle recursive cases via a parameter r. The generic typing of these functions

71

evalConst :: (e t → t) → Const e t → t

evalSum :: (e t → t) → Sum e t → t

evalProduct :: (e t → t) → Product e t → t

evalConj :: (e t → t) → Conjunction e t → t

evalDisj :: (e t → t) → Disjunction e t → t

evalCond :: (e t → t) → Conditional e t → t

evalConst r (Const x) = x

evalSum r (Plus x y) = r x + r y

evalProduct r (Times x y) = r x ∗ r y

evalConj r (And x y) = r x && r y

evalDisj r (Or x y) = r x | | r y

evalCond r (If x y z) = if r x then r y else r z

Figure 3.18: Individual evaluation cases

evalCases1 = evalConst ? evalSum ? evalProduct

evalCases2 = evalConj ? evalDisj ? evalCond ? evalCases1

eval1 = fix (λr (In e) → evalCases1 r e)

eval2 = fix (λr (In e) → evalCases2 r e)

Figure 3.19: Evaluation functions

(such as the result of evalConj being type t, not type Bool) is justified by the

GADT constraints in the definitions of the component types.

Next, we can define the evaluation functions themselves by constructing the

fixed points of combinations of cases. Figure 3.19 shows two such evaluation func-

tions: the first (eval1) handles types such as E1 that contain constants and numeric

expressions; the second (eval2) handles types such as E2 that additionally contain

72

showConst r (Const x) = show x

showSum r (Plus x y) = r x ++ "+" ++ r y

showProduct r (Times x y) = r x ++ "∗" ++ r y

showConj r (And x y) = r x ++ "&&" ++ r y

showDisj r (Or x y) = r x ++ " | |" ++ r y

showCond r (If x y z) = "if " ++ r x ++

" then " ++ r y ++

" else " r z

showCases1 = showProduct ? showConst ? showSum

showCases2 = showCond ? showDisj ? showConj ? showCases1

showExpr1 = fix (λr (In e) → evalCases1 r e)

showExpr2 = fix (λr (In e) → evalCases2 r e)

Figure 3.20: Expression printers

Boolean expressions. Note that the order of arguments to (?) is not related to the

construction of the sum: eval1 is equally applicable to arguments of type E1 or

E1', despite the differing order of summands in those types.

Finally, Figure 3.20 demonstrates printers for expressions, using the show me-

thod to print constant values. The construction is similar to that for evaluation

(albeit without the dependency on the GADT constraints) and has the same ben-

efits: cases are defined independently, can be arbitrarily combined, and require

neither modification of data type definitions, modification of existing functions,

nor the introduction of new types or type classes.

73

3.5 RELATED WORK

Although they have been implemented in both Haskell and other languages, such

as BitC [57], overlapping instances do not appear to have received much atten-

tion in prior research. Peyton Jones et al. [50] consider some of the issues with

overlapping instances and other features of Haskell that were current at the time,

such as context reduction. However, as the combination of functional dependencies

and type classes had not yet been proposed, they do not anticipate many of the

interactions that motivated the work in this dissertation.

The use of overlapping instances is not quite as sparse. We have already dis-

cussed the mechanisms that Swierstra [64] and Liang et al. [38] used to support

type-level coproducts, and the approach that Kiselyov et al. [35] use to define a

library for heterogeneous lists in Haskell. Kiselyov and Lämmel [34] take a similar

approach in defining an object system in Haskell. In the latter two cases, the au-

thors describe methods to avoid the use of overlapping instances, but at the cost

of additional code complexity.

We also mechanically collected and analyzed uses of overlapping instances in

the Hackage repository. We believe this is one of the first uses of Hackage to answer

language design questions. However, there have been several similar projects. We

were guided, for example, by Andrew Wright’s study of the value restriction in

Standard ML [71], which examined a wide variety of ML programs to determine

whether a language design choice was justified, and by Duncan Coutts’ description

of using Hackage for regression testing [4].

Heeren and Hage [19] describe a technique for providing additional information

to the type checker in the form of type-class directives, specified separately from

the Haskell source code. These directives include types excluded from classes, such

as excluding functions from the Eq class, and disjoint classes, such as requiring

that the Integral and Fractional classes be disjoint. While specifying type-class

74

directives separately allows them to be applied to existing Haskell code, it also

limits their usability and generality. In particular, while they can specify that a

particular predicate is excluded from a class, or that a class is closed, they cannot

use that information in an instance precondition or qualified type. Heeren and

Hage’s directives do address some of the uses of explicit exclusion, such as closing

classes or ensuring that classes are disjoint.

Jones [32] originally proposed the use of functional dependencies in type-class

systems. Hallgren [17] describes some uses of functional dependencies for type-level

computation, which we used for examples in Section 3.2.1. Alternative notation

for functional dependencies was discussed by Neubauer et al. [46] and by Jones

and Diatchki [33].

Much of the work described in this section has previously been described in

our publications on instance chains [45] and on Hackage [44].

75

4. A LOGIC OF INSTANCE CHAINS

To this point, we have had two views of type classes. The first is as mappings from

types to implementations of class methods: this explains the use of type classes

to implement overloading. The second is as systems of predicates: this explains

the role of type classes in typing and type inference. This chapter relates these

two ideas. We begin by defining the syntax of predicates, instances, and class

constraints (§4.1). We formalize the intuitive notion of classes as mappings from

types to implementations (§4.2), and extend this notion to provide a Kripke-style

model of class predicates and axioms (§4.3). Finally, we provide two judgments on

predicates. We define a notion of acceptability (§4.4), and show that all acceptable

programs have models, and we define a notion of entailment (§4.5), and show that

it is sound and suitable for Jones’s system of qualified types.

4.1 SYNTAX

Figure 4.1 gives a summary of the Habit class system syntax [51]. We have omitted

some of the special cases of the full language—for example, we have omitted Habit’s

label and area kinds, and corresponding types—and we have simplified the surface

syntax in some ways that do not compromise the expressivity of the class system—

for example, we have omitted the optional “= τ” suffix on predicates. We overload

the symbol ε to refer to empty axioms and to the empty (non-fails) flag; its

meaning will be unambiguous in context.

Types. Details of the type system are not significant to our semantics; we have

fixed a particular concrete syntax purely to ease presentation and examples. We

76

Type variables tκ ∈ TVarκ Naturals n

Type constants K κ Class names C ∈ ClassName

Index sets Y ,Z ⊆ N

Kinds κ ::= ? | nat | κ→ κ

Types τκ, υκ ∈ Typeκ ::= tκ | n | K κ | τκ′→κ τκ′

Flags f ∈ Flags ::= ε | fails

Predicates π ∈ Pred ::= C ~τ f

Contexts P ,Q ::= ~π

Clauses ξ ::= d : ∀~t . π ⇐ P

Schematic axioms α ::= ε | ξ ; α

Ground axioms γ ::= ε | (d : π ⇐ P) ; γ

Class constraints χ ::= C : ~κ | C : Y Z | ∀~t . π ⇒ π′

Figure 4.1: Habit class system syntax (abbreviated)

use TVar =
⋃
κ∈Kind TVarκ and Type =

⋃
κ∈Kind Typeκ, and will omit the kind

annotations on types and type variables when they are irrelevant, or can be inferred

from context. Habit has a number of built-in kinds, all treated identically for the

purposes of this presentation; we have chosen to include types n of kind nat as we

have already used type-level naturals in a number of examples. We write GTypeκ

for the set of ground types of kind κ, that is, those elements of Typeκ that contain

no type variables, and we write GType for
⋃
κ∈Kind GTypeκ.

Predicates. We will refer to predicates of the form C ~τ as positive predicates,

and those of the form C ~τ fails as negative predicates. Unlike many logics, we

do not have a distinct negation operator; instead negation is treated as part of the

syntax of predicates. However, we can give a syntactic definition of the negation

77

of a predicate π, written π:

C ~τ = C ~τ fails C ~τ fails = C ~τ

Tuples. Given some set A we will write products A×A as A2, A×A×A as A3

and so forth. We will write ~a ∈ An for tuple values (avoiding confusion with the

notation for negation). We will assume that tuples are indexed by naturals and

will write |~a| for the number of elements in ~a; for example, if ~a ∈ A2, then we have

that |~a| = 2 and write a0 for the first element of the tuple and a1 for the second.

Axioms. We distinguish between schematic axioms, in which each clause may

itself be quantified over some set of type variables, and ground axioms, in which

they are not. We will assume that the clauses in axioms are indexed by the naturals.

We require that all clauses in an axiom make assertions about the same class, and

define:

class(C ~τ f) = C

class(α) = C such that ∀(d : ∀~t . π ⇐ P) ∈ α. class(π) = C .

We will make the same assumption, and use the same notation, for ground axioms

γ. Note that we use short versions of implication symbols (⇒ and⇐) for syntactic

symbols and longer versions (=⇒ and ⇐=) for meta-level implications.

Substitutions. We use a standard notion of substitutions for mappings of type

variables to types (of matching kinds). If ~t is a sequence of type variables, we

write Subst(~t) for the substitutions with domain ~t , and GSubst(~t) for the ground

substitutions with domain ~t . We define the action of type substitutions on types

in the usual fashion.

Class constraints. We include three varieties of class constraints, so called be-

cause they restrict the possible membership of classes. Kind constraints C : ~κ

78

restrict the tuples of class C to have the kinds specified. Functional dependency

constraints C : Y Z require that the tuples in class C preserve the given

functional dependency. Superclass constraints ∀~t . π ⇒ π′ indicate that whenever

predicate π is provable, predicate π′ must also be provable; the form of π and π′

are limited by the syntactic form of Habit superclasses.

Functional dependencies. We will frequently be interested in those functional

dependency constraints that apply to a particular class (or predicate on that class).

We use the following (overloaded) function to capture this pattern: if X is some

set of class constraints, then we define the functional dependencies of class C in

X as:

fdX (C) = {Y Z | (C : Y Z) ∈ X } ∪ {N ∅}

and similarly for the functional dependencies of a predicate:

fdX (C ~τ f) = fdX (C).

The set X will be omitted when it is obvious from context. To ensure that fdX (C)

is never empty, we have added N ∅ to the functional dependencies for all

classes. This constraint is trivially satisified, as it does not require any position to

be determined from the others. Thus, any relation satisfies the dependency N ∅,

and so adding it does not affect the modelling of programs. Later rules will be

able to assume that all classes have at least one functional dependency constraint.

Relations modulo functional dependencies. When considering predicates

and an associated functional dependency, it is useful to consider the predicates

without including any of the parameters that are determined by the dependency.

For example, to know whether the instances

instance Eq t ⇒ Elems [t] t

instance Elems [Int] Char

79

are in conflict, it is not enough just to try unifying the conclusions of the instances

Elems [t] t and Elems [Int] Char (which would fail, suggesting the instances are

not in conflict). Rather, we must take the functional dependency for Elems into

account, and attempt to unify the determining parameters [t] with [Int]. In this

example, the latter unification succeeds, showing that the instances are in conflict.

We can generalize this idea to any relation on types R and any index set Z by

writing πRπ′ mod Z to indicate the result of relating only those parameters of π

and π′ not indexed by Z . Formally we define

(C ~τ f)R(C ′ ~υ f ′) mod Z ⇐⇒ (C = C ′ ∧ f = f ′ ∧ ∀i 6∈ Z . τiRτ
′
i),

The notation “πRπ′ mod Z ” is chosen by analogy with modular arithmetic: as

powers of x are not distinguished by arithmetic modulo x , so the elements indexed

by Z are not distinguished in relations modulo index set Z .

4.2 CLASSES AND IMPLEMENTATIONS

This section formalizes the intuitive semantics of a type class as a map from types

(or tuples of types) to implementations of the class methods at those types. In the

remainder of this chapter, we will use this formalization as the basis to define a logic

of type classes, and will relate it to different formal elements of programs, such as

predicates, instance declarations, and class constraints. In the following chapter,

we will use the same formal structure of classes to give semantics to programs with

overloading.

The semantics of a single parameter type class, such as Eq or Ord, can be

formalized as a partial mappings from types to evidence values. The domain of

such a mapping consists of all types in the class; for example, given the standard

Eq class with instances for integers and pairs (§2.2), the model of the Eq class would

have the domain

{Int , (Int , Int), (Int , (Int , Int)), ((Int , Int), Int), . . . }.

80

The codomain of the mapping depends on the particular class being modelled; for

the Eq class, it consists of type-specific implementations of equality and inequality

operators, while for the Ord class we would expect implementations of comparison

operators. We will write the implementations for the methods of class C at types

~τ as ImplC (~τ)—for example, ImplEq(Int) would be the semantic interpretation of

the tuple of equality and inequality tests. Thus, we have that a semantics GEq of

the Eq class should be a partial function

GEq : (τ : GType) ⇀ ImplEq(τ).

The function is partial because not all types are in the Eq class. We have used

the dependent notation as a convenient abbreviation, not to indicate a particular

type-theoretic framework for our semantics. In this case, an equivalent formulation

would have been:

GEq : GType ⇀
⋃

τ∈GType

ImplEq(τ) such that ∀τ ∈ dom(GEq). GEq(τ) ∈ ImplEq(τ).

This approach extends naturally to multi-parameter type classes by extending

the domain of the semantics from types to products of types. The domain of the

mapping is now a relation on types, capturing the type-level information encoded

in the class; the codomain, as before, captures the evidence that particular tuples

of type are in the class. The semantics of a two-parameter class, such as the Elems

class (§2.4.2) would be a function:

GElems : (~τ : GType2) ⇀ ImplElems(~τ).

A three-parameter class would have GType3 as its domain, and so forth. The

number of parameters of a class is called its arity, and we will write arity(C) to

refer to the arity of class C . We can now write a general rule that captures the

examples so far: for a class C , we have that:

GC : (~τ : GTypearity(C)) ⇀ ImplC (~τ).

81

Finally, we can define a semantics G for all the classes in a program, parameterized

by class names:

G : (C : ClassName) ⇀ ((~τ : GTypearity(C)) ⇀ ImplC (~τ)).

We call any object of this form a model structure for a class system.

This formulation of model structures is quite general: each class has different

methods, and a given model structure may contain arbitrary implementations of

the class methods. This generality will be useful when extending our semantics

of classes to the semantics of programs. In this chapter, however, we are not

concerned with the method implementations themselves, and so will introduce

an abbreviated notion, which we call evidence expressions. Evidence expressions

capture the intuition that each method implementation derives from a particular

collection of class instances; thus, by identifying the instances, we have enough

information to identify the actual implementations. We give the following syntax

for evidence expressions:

Evidence constructors d ∈ InstName

Evidence expressions e ::= d e | 〈~e〉 | •

Evidence constructors d , drawn from some suitable set of names, identify particular

instances. Evidence expressions represent combinations of instances. Negative

predicates correspond to no method implementations; however, to permit uniform

treatment of positive and negative predicates, we introduce a distinguished value

• to serve as the evidence expression for negative predicates.

4.3 MODELLING TYPE CLASSES

Next, we extend the semantic view of type classes to model a logic of type class

constructs, such as predicates or instances. Our approach follows Kripke’s tech-

nique to model intuitionistic and modal logics [36]. A Kripke model is a triple

〈G,�, |=〉, where

82

� G is a set of nodes (alternatively called points or possible worlds), each of

which corresponds to a particular collection of knowledge about the predi-

cates being modelled.

� � is a relation on elements of G, where for G ,G ′ ∈ G, G � G ′ if G ′ represents

an extension of the knowledge represented by G . Different logics impose

different constraints on �; for our purposes, we will assume that it is reflexive

and transitive.

� |=, sometimes called the forcing relation, relates elements of G to logical

formulae, again subject to constraints depending on the logic being modelled.

There are several reasons that this approach is suited to modelling type classes.

First, our notion of proof is constructive: a proof of Eq Int, for example, must pro-

vide implementations of the equality and inequality predicates. Second, because

type classes are open, our notion of refutation is intuitionistic. The typing of an

expression, and thus any predicate entailment or semantic interpretation of the

expression, must be consistent with any (well typed) use of the expression in the

remainder of the program. For example, when typing a particular expression, we

may either have evidence for Eq Int, evidence for Eq Int fails, or neither; we ex-

pect any typings or entailments derivable in the third case to hold in environments

where either Eq Int or Eq Int fails are provable.

Typically, a logic is related to Kripke models by leaving the structure of nodes

abstract, but by constraining the behavior of the extension and forcing relations.

In contrast, we have a fixed model structure—the semantic view of type classes pre-

sented in the prior section—and can thus give concrete definitions of the extension

and forcing relations. We begin with extension: for any G ,G ′ ∈ G:

G � G ′ ⇐⇒ ∀C ∈ dom(G).G(C) ⊆ G ′(C),

83

or, equivalently

G � G ′ ⇐⇒ ∀C ∈ dom(G), ~τ ∈ dom(G(C)).G(C) = G ′(C).

To define the forcing relation, we must begin by defining a notion of formulae for

type classes, corresponding to the various forms of class expressions and declara-

tions; over the remainder of the section, we shall treat each type of formula in

turn.

Formulae φ ::= 〈π, e〉 | 〈P , e〉 | P | 〈α,X 〉 | χ

We associate predicates π and contexts P with the evidence that they hold; we

will generally write G |= e : π instead of G |= 〈π, e〉, and similarly for contexts.

The modelling of an axiom will depend on the class constraints under which it is

modelled; we will write G ,X |= α for G |= 〈α,X 〉.

4.3.1 Predicates

Predicates are the fundamental part of the Habit class system, corresponding to

literals (i.e., atomic formulate and their negations) in logic. As in Haskell, the

predicate C ~τ holds if types ~τ are in class C ; the predicate C ~τ fails, which holds

if types ~τ are not in class C , has no direct analogue in Haskell.

Predicates map directly to the model of classes. For G ∈ G, we say that:

G |= e : C ~τ ⇐⇒ G(C)(~τ) = e

G |= • : C ~τ fails ⇐⇒ ∀G ′ � G . ~τ 6∈ dom(G(C))

A predicate C ~τ fails holds not just if there is no evidence for it in G , but if

it is somehow incompatible with G ; we capture this by saying that there is no

extension G ′ of G such that semantics of C in G ′ includes ~τ . This corresponds

to the definition of forcing for negation in intuitionistic logics. Observe that, by

the definition of extension, if G |= e : π, then G ′ |= e : π for all G ′ � G . As

84

in intuitionistic logics, it is not necessarily true that, for any predicate π, there is

some evidence expression e such that either G |= e : π or G |= e : π.

Contexts, or sequences of predicates, occur frequently in Habit programs, both

as hypotheses in instance declarations and as qualifiers in qualified types. A context

is treated as a conjunction of predicates; writing |P | for the length of context P ,

we define that:

G |= 〈ei〉 : P ⇐⇒ ∀i < |P |. G |= ei : Pi .

The negation of a context cannot occur syntactically in a Habit program; however,

it will occur in the modelling of instance chains, as we will need to represent not

only when the hypotheses of a particular clause hold, but also when they do not.

Modelling the negation of a context P , written P , is inspired by DeMorgan’s law:

G |= P ⇐⇒ ∃i , e. G |= e : Pi .

We do not associate evidence with a negated context: there many be many suitable

indices i with different corresponding evidence values e.

4.3.2 Axioms

We next describe the modelling of instance chains. An individual instance chain

includes both logical assertions (for example, an instance for Eq Bool asserts that

type Bool is in class Eq) and method implementations (such as the implementation

of the equality operator). Clauses within the chain may themselves be polymor-

phic. We define a schematic axiom corresponding to each instance chain to capture

its logical assertions. For example, given a class C with method f, the schematic

axiom corresponding to the instance chain:

instance C Int where f = . . .

else C Bool where f = . . .

else C t if D t where f = . . .

85

would be:

(∀. C Int⇐ ()) ; (∀. C Bool⇐ ()) ; (∀t . C t ⇐ (D t)) ; ε.

We include empty quantifiers “∀.” and qualifiers “()” here to emphasize that these

are schematic clauses, even if only the last clause actually has multiple instantia-

tions.

Rather than attempting to model schematic axioms directly, we begin with a

notion of specialization, relating schematic axioms to sets of ground axioms, elim-

inating any polymorphism present in the original scheme. We will relate ground

axioms to models of classes, and then relate schematic axioms to models of classes

through their corresponding ground axioms.

Intuitively, we specialize an axiom scheme α for class C by enumerating each

well-formed predicate π of class C , and then attempting to restrict each clause in

α to that predicate. Consider the example instance chain and schematic axiom for

class C above. If the set of ground types were limited to {Int,Bool,Float}, then

we could generate the following three specializations of this axiom scheme, one for

each positive predicate on C :

(C Int⇐ ()) ; (C Int⇐ (D Int)) ; ε

(C Bool⇐ ()) ; (C Bool⇐ (D Bool)) ; ε

(C Float⇐ (D Float)) ; ε

This is an entirely syntactic process; for example, in the first specialization, the

clause C Int ⇐ (D Int) is included whether or not it is relevant (in this case,

it is not), and regardless of whether type Int is in class D. For another example,

consider the standard Eq class, along with the instance

instance Eq (List t) if Eq t where . . .

86

and the set of type constructors {Int,List}. In this case, we would expect to get

an infinite, recursive set of ground axioms:

(Eq (List Int)⇐ (Eq Int)) ; ε

(Eq (List (List Int))⇐ (Eq (List Int))) ; ε

...

The specialization process needs to take contradicting predicates into account.

For example, consider a class C with instance chain

instance C Int fails

else C t

When specializing the corresponding schematic axiom to the predicate C Int, we

must still include the first clause, as it contradicts the predicate we desire to prove;

thus, the specialization to C Int would be

(C Int fails⇐ ()) ; (C Int⇐ ()) ; ε.

The same is true of functional dependencies; for example, given a class

class F t u | t → u

consider the specialization of the instance chain

instance F [Char] Int

else F [t] t

When we specialize this instance for the predicate F [Char] Int, we expect the

ground axiom:

(F [Char] Int⇐ ()) ; ε.

However, we must be careful when specializing the instance for the predicate

F [Char] Char: a naive approach might observe that the first clause does not

match the target types, and thus construct the specialized axiom:

(F [Char] Char⇐ ()) ; ε

87

based on the second clause. Clearly, we cannot model both of these specializations

without violating the functional dependency on F. Thus, correct specialization

depends upon a notion of conflict between predicates. We say that π and π′ conflict

if either one is the negation of the other, or if they make differing assertions about

a parameter determined under a functional dependency. Formally, we define

X ` π 	π′ ⇐⇒ π = π′ ∨ (∃(Y Z ∈ fdX (π)). π = π′ mod Z ∧ π 6= π′)

for some set of class constraints X and any two predicates π and π′.

We are now prepared to define the restriction of an axiom α to a predicate

π given a set of class constraints X , written α|π,X . Note that not all quantified

variables in a schematic clause necessarily appear in the conclusion of the clause—

for example, there may be variables determined by the functional dependencies

on the hypotheses—and so the restriction of a single schematic axiom α will, in

general, be a set of ground instances γ.

ε|π,X = {ε}

((d : ∀~t . π ⇐ P) ; α)|π′,X =

{(d : S π ⇐ S P) ; γ |

S ∈ GSubst(~t),

(S π = π′ ∨ X ` S π 	π′,
γ ∈ α|π′,X}

if there is at least one such S ;

α|π,X
otherwise.

Finally, we can extend the forcing relation to ground and schematic axioms.

The empty axiom is trivially forced; for any G ∈ G:

G |= ε.

A ground axiom (π ⇐ P) ; γ corresponds to two conjuncts: for G ∈ G, if G

forces P , then it must also force π; similarly, if it forces P , then it must force

88

γ. To formalize this, we begin by abstracting the construction of evidence, taking

account of negative predicates:

appπ(d , e) =

d e if π is positive;

• if π is negative.

Now, we can extend the forcing relation to ground axioms: for G ∈ G,

G |= (d : π ⇐ P) ; γ ⇐⇒ (G |= e : P =⇒ G |= appπ(d , e) : π)

∧ (G |= P =⇒ G |= γ).

Finally, we can extend the forcing relation to schematic axioms. If we define

Preds(C) to be the predicates on class C :

Preds(C) = {C ~τ f | ~τ ∈ Typearity(C), f ∈ Flags},

then we can define that, for G ∈ G and class constraints X :

G ,X |= α ⇐⇒ ∀π ∈ Preds(class(α)).∀γ ∈ α|π,X . G |= γ.

4.3.3 Class Constraints

This section describes the modelling of the three forms of class constraint present in

the Habit class system: kind signatures (which restrict the types that can belong to

classes), functional dependencies (which restrict the relations expressed by classes),

and superclasses (which restrict the relationships between classes). Unlike the

notions in the prior sections, each of these applies to a class as a whole instead of

to particular tuples within the class.

Kinds

The simplest class constraints are kind signatures. A kind constraint C : ~κ, where

the length of kind tuple ~κ is the arity of class C , specifies that the i th parameter of

89

class C —that is, the i th element in each type tuple in the domain of the semantics

of C —be of kind κi . We can extend the forcing relation to kind constraints as

follows: for G ∈ G,

G |= C : ~κ ⇐⇒ ∀~τ ∈ G(C). ∀i .τi ∈ GTypeκi .

This illustrates a point of flexibility in the way we have defined the semantics of

classes. An alternative approach would have been to express kinds directly in the

structure of class semantics, as we did with arities. At the other extreme, we could

have modelled classes by mappings of arbitrary sequences of types to evidence,

and enforced class arities as a class constraint. We do not believe that any of these

approaches is more expressive than the others, but we hope that the approach we

have taken captures the intuition of type classes with a minimum of notation.

Functional Dependencies

Functional dependencies were originally proposed for class systems as a mechanism

to eliminate ambiguities in multiparameter type classes by inducing improving

substitutions [32]. However, these substitutions are only valid because of properties

of the underlying relations. This section formalizes the restrictions that functional

dependency constraints impose on the models of classes.

Intuitively, functional dependencies require that classes behave as type-level

partial functions. For example, the Elems class (§2.4.2)

class Elems c e | c → e where . . .

has a functional dependency stating that parameter c determines parameter e.

Equivalently, we can say that given two predicates Elems c e and Elems c' e',

where c,c',e,e' are arbitrary types, if c = c', then we must have that e = e'.

This is precisely the typical notion of a function, and corresponds to the original

definition of functional dependencies in database theory [40].

90

Formally, we capture functional dependency constraints using sets of parameter

indices. For example, the Elems declaration would give rise to the constraint

Elems : {0} {1}.

A single class declaration may give rise zero, one, or many functional dependency

constraints; for example, the following declaration

class (==) t u | t → u, u → t

would give rise to the two constraints (==) : {0} {1} and (==) : {1} {0}.

The Eq class, on the other hand, gives rise to no functional dependency constraints.

The forcing relation for functional dependency constraints is a straightforward

generalization of the intuitive notion. Writing ~τ |Y for those elements of ~τ indexed

by the elements of Y , we have that for G ∈ G

G |= (C : Y Z) ⇐⇒ ∀~τ ∈ dom(G(C)).

∀G ′ � G , ~υ ∈ dom(G ′(C)). (~τ |Y = ~υ|Y =⇒ ~τ |Z = ~υ|Z).

Another approach would be to express functional dependency constraints in

terms of negative predicates by observing that, for each tuple in the class, all other

tuples that differ only on determined parameters must be excluded from the class.

That is:

G |= (C : Y Z) ⇐⇒ ∀~τ ∈ dom(G(C)).∀~υ ∈ Typearity(C).

(~τ = ~υ mod Z ∧ ~τ 6= ~υ) =⇒ G |= C ~υ fails.

These definitions are equivalent; the first is better aligned with the intuitive under-

standing of functional dependencies, and the role that functional dependencies can

play in type inference, while the second is better aligned to proving (or disproving)

predicates based on a functional dependency.

91

Superclasses

Habit, like Haskell, allows class declarations to include superclass constraints; for

example, the definition of the Ord class (for totally ordered types) requires that its

members also be members of the Eq class:1

class Ord t | Eq t where (<) :: t → t → Bool . . .

We would capture the superclass of the Ord class using a class constraint of the

form

∀t .Ord t ⇒ Eq t .

Note that we can make certain assumptions on the form of superclass constraints

because they arise from Habit-style class declarations. In particular, we can assume

that, for any superclass constraint ∀~t . π ⇒ π′, both π and π′ are positive.

Extending the forcing relation to superclasses is pleasingly straightforward; we

define that, for G ∈ G:

G |= (∀~t . π ⇒ π′) ⇐⇒

∀S ∈ GSubst(~t). (∃e. G |= e : S π =⇒ ∃e ′. G |= e ′ : S π′).

4.3.4 Programs

We capture the classes and instances of a Habit program with a pair A | X , where

A is a set of axioms and X is a set of class constraints (kind signatures, functional

dependencies, or superclasses). We call such a pair a type class basis because it

specifies the logical content of the class and instance declarations, but not the

implementation of the methods. The forcing relation for bases is defined in terms

of their components: for G ∈ G,

G |= A | X ⇐⇒ (∀α ∈ A. G ,X |= α) ∧ (∀χ ∈ X . G |= χ).

1The corresponding Haskell syntax for superclasses class Eq t => Ord t where ... uses
the implies arrow backwards: being a member of Eq does not imply that a type is a member of
Ord, but being a member of Ord does imply that a type is a member of Eq.

92

We say that a tuple 〈G,�, |=〉 models the basis A | X if G is a set of model

structures, � and |= are defined as over the prior subsections, and ∀G ∈ G. G |=

A | X . As the extension and forcing relation are constant, we will sometimes refer

to a set G, instead of the tuple 〈G,�, |=〉, as a model.

A given basis may have zero, one, or many models. A basis with contradic-

tory or incoherent instance declarations, or with instance declarations that conflict

with its class constraints, has no models. On the other hand, the forcing relation

does not constrain those predicates not mentioned in the program. For example,

a program may contain the declaration of the Eq class, but neither an instance

asserting Eq Bool nor an instance asserting Eq Bool fails. The models of such

a program could uniformly force Eq Bool, uniformly force Eq Bool fails, or the

treatment of Eq Bool could vary in different nodes of the model. We say that a

basis A | X is consistent if it has at least one model.

4.4 ACCEPTABILITY AND MODEL EXISTENCE

The semantics of Habit predicates developed in this chapter, and the semantics

of overloaded expressions that we will develop in the next, depend on programs

having models. However, as discussed at the end of the last section, there are

syntactically valid Habit programs that have no models. This section describes a

condition, called acceptability that is sufficient to ensure that programs are con-

sistent. Because it is intended to be verified as part of the compilation of Habit

programs, acceptability must be a decidable, syntactic criterion; as a result, it is

necessarily a conservative approximation of consistency. It is, however, relatively

permissive: for example, it admits more programs than the criteria specified in the

Haskell report or in some prior work on functional dependencies [63], such as the

various Habit examples given in the previous chapter.

93

We begin this section by describing the acceptability criterion (§4.4.1), identify-

ing a number of component criteria corresponding to the forcing relation for differ-

ent type class constructs. We then provide a model existence theorem, proving that

any program that meets the acceptability criterion has a non-trivial model (§4.4.2).

Our proof approach is based on Fitting’s proof of model existence for intuitionis-

tic logic [9]; however, we have had to adapt his techniques to our setting, which

more intuitively models type classes and assumes a syntactic, rather than semantic,

notion of consistency.

4.4.1 Acceptability

As a consistent program has at least one model, we can use the constraints of the

model structure and forcing relation to guide our definition of the acceptability

criterion. We begin by informally describing several semantic properties of axioms

that are necessary for consistency:

� The model structure is a function, guaranteeing a coherent semantics of

overloaded expressions. Therefore, there must not be multiple axioms that

can prove the same predicate.

� Neither a predicate and its inverse, nor predicates that violate the declared

functional dependency constraints, can be modelled.

� The axioms must respect the declared kind constraints and superclass con-

straints.

To ensure these properties, we will introduce several syntactic notions, conser-

vatively approximating the underlying semantic notions: overlap, corresponding

to incoherence, conflict, corresponding to contradiction, and preservation, corre-

sponding to superclasses. We will combine these to define our notion of accept-

ability, providing a conservative approximation of consistency.

94

Inter-axiom Overlap and Conflict

In Haskell 98, two instances are said to overlap if their conclusions unify. The

same notion can be applied to Habit instance clauses. Formally, we define:

overlaps(∀~t . π ⇐ P ,∀~u. π′ ⇐ Q) ⇐⇒

∃S ∈ Subst(~t), S ′ ∈ Subst(~u). Sπ = S ′π′. (4.1)

The notion of conflict is new to Habit. We say that two clauses conflict if they

may provide proofs of inconsistent predicates; as with overlap, this is a necessarily

conservative approximation. In Habit, conflict must take account of both nega-

tive predicates (we cannot model a program that asserts both a predicate and its

negation) and functional dependencies (we cannot model a program that makes

inconsistent assertions about the determined fields of a relation, as discussed in

the previous section). We define conflicting axiom clauses by:

conflictsX (∀~t . π ⇐ P ,∀~u. π′ ⇐ Q) ⇐⇒

∃S ∈ Subst(~t), S ′ ∈ Subst(~u). X ` S π 	S ′ π′. (4.2)

The definitions of conflict and overlap existentially quantify over substitutions;

however, they can be implemented directly by unification [55] (following, if neces-

sary, a renaming of quantified variables).

We extend each of these notions to axioms by considering their clauses pairwise:

overlaps(α, α′) ⇐⇒ ∃ξ ∈ α, ξ′ ∈ α′. overlaps(ξ, ξ′)

conflictsX (α, α′) ⇐⇒ ∃ξ ∈ α, ξ′ ∈ α′. conflictsX (ξ, ξ′).

This may seem overly strict: indeed, it ignores the additional information at each

clause that none of the prior clauses applied. At this time, however, we have found

few motivating examples to justify the increased complexity required by more

permissive notions of axiom overlap and consistency, and have thus chosen the

95

simpler presentation. We hope to explore more permissive definitions of overlap

and conflict as future work (§7.1).

Intra-axiom Overlap and Conflict

The conflict check just described determines when pairs of instances violate func-

tional dependencies; however, it is also possible for different ground instantiations

of a single instance clause to violate a functional dependency constraint. For ex-

ample, the instance

instance Elems [t] u where . . .

could be used to prove both Elems [Int] Int and Elems [Int] Char, violating

the functional dependency constraint on the Elems class.

To eliminate such self-conflicting axiom schemes, it is sufficient to require that

any type variables appearing in determined positions (under some functional de-

pendency constraint) must appear in determining positions (under the same con-

straint). To formalize this notion, we make use of some existing theory of functional

dependencies [33, 40]. Let ftv(π) be all the free type variables of predicate π. The

induced functional dependencies, Fπ, of π are the dependencies:

Fπ =

{ftv(~τ |Y) ftv(~τ |Z) | Y Z ∈ fd(π)} if π is positive

∅ otherwise

Note that, unlike the class constraints, these are functional dependencies over sets

of type variables, not over index sets. Because functional dependencies constrain

what is in a class, not what is not in it, a negative predicate induces no relationship

among its arguments. By extension, for a context P , let FP be the union of the

induced functional dependencies for each predicate π ∈ P . The closure of a set J

with respect to a set of functional dependencies F , written J +
F is intuitively the

set of all elements determinable from J using the functional dependencies in F .

Formally, we define J +
F as the smallest set such that:

96

1. J ⊆ J +
F ; and,

2. if Y Z ∈ F and Y ⊆ J +
F , then Z ⊆ J +

F .

We can now define self-conflicting axiom clauses as those in which any variable in

a determined position does not appear in some determining position; formally:

self -conflictingX (∀~t . C ~τ ⇐ P) ⇐⇒

∃(Y Z) ∈ fdX (C). ftv(~τ |Z) 6⊆ (ftv(~τ |Y))+
FP

(4.3)

This definition is only stated for clauses asserting positive predicates; axioms as-

serting negative predicates are trivially not self-conflicting, as functional depen-

dencies do not constrain the types excluded from relations.

Previous work on type classes and functional dependencies has referred to a

similar restriction on instances as the “covering” [33] or “coverage” [63] condition.

Our condition is identical to Jones and Diatchki’s covering condition; we believe

the name “self-conflict” better captures the motivation for the restriction. It is

a relaxed version of the coverage condition of Sulzmann et al.; they do not close

the set of determining variables over the functional dependency constraints of the

hypotheses.

In a similar way, a single clause may provide distinct evidence values for the

same predicate. Consider the following (admittedly pathological) instance, assum-

ing arity-1 classes C and D:

instance C Int if D t

with the corresponding schematic axiom

(∀t . C Int⇐ D t) ; ε.

Specializing this axiom scheme will give one concrete axiom for each type t , each

providing distinct evidence expressions, and thus potentially distinct evidence,

for C Int. We identify that self-overlap occurs in clauses in which the variables

97

appearing in the hypotheses are not determined by the variables appearing in the

conclusion:

self -overlapping(∀~t . π ⇐ P) ⇐⇒ ftv(P) 6⊆ (ftv(π))+
FP

(4.4)

A stricter version of this check (one that again does not close over the functional

dependencies of P) is called the “bound variables” condition by Sulzmann et al.;

again, we believe that our name captures the motivation, rather than the imple-

mentation, of the restriction.

As with inter-axiom conflict and overlap, these notions of self-conflict and self-

overlap can be extended to axioms by considering the clauses individually. We do

not need to consider conflict or overlap between clauses in a chain, because at most

one clause in a chain can apply to any particular predicate.

self -conflicting(α) ⇐⇒ ∃ξ ∈ α. self -conflicting(ξ)

self -overlapping(α) ⇐⇒ ∃ξ ∈ α. self -overlapping(ξ)

Well-Kindedness

We must ensure that the axioms in the program respect the kind constraints for the

classes. This is a straightforward application of common kind-checking techniques

from type inference [27]. We formalize the requirement as follows:

well -kinded(A | X) ⇐⇒

∀α ∈ A, (∀~t . C ~τ f ⇐ P) ∈ α. (C : ~κ) ∈ X =⇒ τi ∈ Typeκi (4.5)

Superclasses

Finally, we must ensure that each axiom respects the declared superclasses. This

is intuitively straightforward—for a basis A | X including a superclass constraint

∀~t .π ⇒ π′, we must show that any model of the basis that forces a ground instance

98

of π also forces the corresponding ground instance of π′. It is somewhat less obvious

how to syntactically check this (fundamentally semantic) criterion. To do so, we

will rely on two approximations. The first is that, if some ground instance of π is

forced, then it must be because it is the conclusion of an axiom clause; this allows

us to approximate the conditions under which π is forced by the hypotheses of

any axiom clause that could prove it. The second is that the entailment relation,

developed in the next section (§4.5), provides a mechanical way to verify that

ground instances of π′ are forced, and the soundness of entailment (Theorem 4.12)

will give the semantic condition we desire.

There is, however, a circularity in this approach: the soundness argument for

entailment depends on the basis of the entailment being acceptable. Thus, it might

seem that accepting a program depends on having already accepted the program.

To avoid this difficulty, we will define a relation, which we call preservation, that

holds if one new axiom preserves all the requirements of an existing, acceptable

basis. Using this relation, we can validate a program iteratively, beginning with

the (trivially acceptable) empty set of axioms.

We begin by defining preservation for an individual clause d : ∀~t . π ⇐ P and

superclass constraint ∀~u. π′0 ⇒ π′1: if the conclusion π of the clause matches the

hypothesis π′0 of the superclass constraint, then we require that the hypotheses of

the clause P be sufficient to prove the conclusion of the requirement π′1. Formally,

we define:

preserves(d : ∀~t . π ⇐ P , ∀~u. π′0 ⇒ π′1, A | X) ⇐⇒

∀S ∈ Subst(~t), S ′ ∈ Subst(~u) such that S π = S ′ π′0.

A | X ` S P S ′ π′1. (4.6)

This is equivalent to the superclass check in the Haskell report [49, §4.3.2], extended

to multi-parameter type classes. Note that we can find the most general such

substitutions S and S ′ by unification, and that the closure of entailment under

99

substitution (Theorem 4.11) guarantees that showing the most general case is

sufficient to show all cases. We can extend the notion of preservation to axioms

and to sets of requirements in the obvious fashion: writing XSC for the superclass

constraints in X , we define that

preserves(α,A | X) ⇐⇒ ∀ξ ∈ α. ∀χ ∈ XSC . preserves(ξ, χ,A | X).

Finally, we can say that a basis A | X satisfies its superclasses if there is some

ordering of the axioms α1, α2, . . . , where A = {αi}, such that each αi preserves

the requirements given the preceding axioms. Defining Aj = {αi | i < j}, we have

that:

satisfies-superclasses(A | X) ⇐⇒ ∀i .preserves(αi ,Ai | X). (4.7)

In practice, we can find such an ordering by topologically sorting the axioms based

on their conclusions and on the declared axioms. There are consistent bases that

are not accepted by this definition. For example, the following two superclass

constraints assert that classes C and D are equivalent to each other:

∀t . C t ⇒ D t ,

∀u.D t ⇒ C t .

Any program in which C and D have the same instances is consistent with these

superclass constraints; however, assuming C and D are not both empty, there is no

ordering of instances that preserves the constraints, as either a C instance will be

ordered before the corresponding D instance, or vice versa. However, we believe

these kinds of circular superclasses will be rare in practice (they have never been

permitted in Haskell), and so we have chosen a simpler definition of superclass

satisfaction that treats axioms one at a time. We believe that further exploration of

superclasses, and of the superclass validation mechanism in particular, are valuable

directions for future study (§7.2).

100

Accepting Programs

We are now able to characterize acceptable programs. We say that a program is

acceptable if its axioms are non-overlapping and non-conflicting, and if there is an

ordering of the axioms such that each axiom preserves the requirements. Formally:

acceptable(A | X) ⇐⇒ satisfies-superclasses(A | X) ∧ well -kinded(A | X) ∧

∀α ∈ A. (¬self -overlapping(α) ∧ ¬self -conflicting(α) ∧

∀α′ ∈ A. (α = α′ ∨ (¬overlapping(α, α′) ∧ ¬conflictingX (α, α′)))).

4.4.2 Model Existence

To justify the acceptability criterion described in the prior section, we will now

prove that any acceptable program can be modelled. Such model existence proofs

are well known for intuitionistic logic [9]. However, our setting presents several

complications. In particular, because our model structure is based on the intuitive

semantics of type classes, it does not explicitly include either negative predicates

(as they provide no implementations) or non-atomic formulae.

Theorem 4.1 (Model existence). Any acceptable program has a non-trivial model.

Formally,

acceptable(A | X) =⇒ ∃G. (G 6= ∅) ∧ (∀G ∈ G.G |= A | X).

The rest of the section is devoted to the proof. We begin by establishing some

terminology for model structures, and some lemmas about model structures and

extension. This will allow us to define a procedure for constructing a model from

a basis, completing the proof.

Definition 4.2. We begin by introducing some terminology to simplify the re-

mainder of the proof. Given a model structure G and a program A | X , we say

that a pair 〈C ~τ , e〉 is consistent with G if G(C)(~τ) = e. We say that a pair

101

〈C ~τ fails, •〉 is consistent with G if C ~τ is inconsistent with G , a term we shall

define shortly. We say that a pair 〈π, e〉 is proved from G if there is some α ∈ A

and some index i such that, letting α′ = α|π,X :

� For each clause (dj : ∀~tj . πj ⇐ Pj) ∈ α′ with index j < i , there is some

predicate π′ ∈ Pj such that π′ is inconsistent with G ; and,

� In clause (d : ∀~t . π ⇐ P) ∈ α′ with index i , there is some ek for each

predicate Pk such that 〈Pk , ek〉 is consistent with G ; and,

� If π is positive, then e = d 〈ek〉; otherwise, e = •.

We say that a predicate π is inconsistent with G if there is some 〈π′, e〉 consistent

with, or proved from, G such that X ` π 	 π′. Finally, we say that axiom α is

relevant to π if α|π,X 6= ε, and that a set of axioms A is relevant to π if some axiom

in A is relevant to π.

If G is a model structure, we write G [C 7→ x] for the model structure G ′ such

that G ′(C) = x and G ′(C ′) = G(C ′) for all C ′ 6= C . We define the pointwise

union of model structures G ,G ′ by

(G dG ′)(C) =

G(C) ∪G ′(C) if C ∈ dom(G) and C ∈ dom(G ′)

G(C) if C ∈ dom(G) but C 6∈ dom(G ′)

G(C ′) if C ∈ dom(G ′) but C 6∈ dom(G).

Lemma 4.3. For G � G ′, any 〈π, e〉 provable from G is provable from G ′, and

any π inconsistent with G is inconsistent with G ′.

Proof. The first half is immediate from the definition of extension (§4.3); the second

follows from the first and the definition of inconsistency (Definition 4.2).

Lemma 4.4. Assuming acceptable(A | X), and some model structure G, there are

no π and distinct evidence values e1, e2 such that both 〈π, e1〉 and 〈π, e2〉 are proved

from G.

102

Proof. We proceed by contradiction. If π were negative, 〈π, •〉 would be the only

tuple provable about π; as we assume distinct evidence values, we have that π is

positive and both e1 6= • and e2 6= •. As each is evidence for a single predicate, we

know that neither is a tuple of evidence values. Thus, we must have that e1 = d1 e ′1

and e2 = d2 e ′2. We distinguish two possibilities: either (1) d1 6= d2, identifying

distinct clauses that prove π, or (2) d1 = d2, identifying a single clause d1 : ∀~t .π′ ⇐

P proving π, but there are distinct values e1 6= e2 proving the hypotheses P .

However, in case (1), we would have distinct clauses d1 : ∀~t1. π1 ⇐ P1 and d2 :

∀~t2. π2 ⇐ P2 in Clauses(A) that could prove π, and thus we would know that, for

some S1 ∈ Subst(~t1), S2 ∈ Subst(~t2), S1 π1 = S2 π2 = π, contradicting the inter-

axiom overlap check (Equation 4.1) of the acceptability of A | X . Alternatively,

in case (2), we must either have distinct specializations d1 : π ⇐ P1, d1 : π ⇐ P2

with P1 6= P2, or, for specialization d : π ⇐ P , have some element Pi of P with

distinct e, e ′ such that both 〈Pi , e〉 and 〈Pi , e
′〉 are consistent with G . The first

contradicts the intra-axiom overlap check (Equation 4.4) of acceptable(A | X); the

second contradicts that G is a model structure, as the mapping from types to

evidence would not be a function.

Lemma 4.5. Assuming acceptable(A | X) and some model structure G, there are

no π, π′ and corresponding e, e ′ such that X ` π 	 π′ and both 〈π, e〉 and 〈π′, e ′〉

are proved from G.

Proof. By contradiction: from X ` π 	π′, we can conclude that either π = π′ or

there is some Y Z in fdX (π) such that π = π′ mod Z , π 6= π′. In the first case,

we must have distinct clauses d1 : ∀~t1.π1 ⇐ P1 and d2 : ∀~t2.π2 ⇐ P2 in Clauses(A)

and substitutions S1 ∈ Subst(~t1), S2 ∈ Subst(~t2) such that π = S1 π1 = S2 π2 = π′.

However, this contradicts the conflict check (Equation 4.2) of acceptable(A | X).

In the second case, the clauses need not be distinct, but the argument is otherwise

identical.

103

Definition 4.6. Fix a acceptable program A | X , and let G0 be some model

structure. We define a sequence of model structures Gn as follows. Enumerate

the positive ground predicates to which A is relevant as π0, π1, . . . , where each

πi = Ci ~τi . Given some structure Gn , we define model structures G i
n+1, which

extend Gn with 〈πi , e〉 if 〈πi , e〉 can be proven from Gn :

G i
n+1 =

Gn [Ci 7→ (Gn(C) ∪ {〈~τi , e〉})] if 〈πi , e〉 is proven from Gn .

Gn otherwise.

Define Gn+1 =di<ω G i
n+1. We say that G0 is a valid initial structure for A | X

if:

1. For each Gn constructed from G0, and each pair 〈π, e〉 consistent with G0,

there is neither (a) some evidence e ′ distinct from e such that 〈π, e ′〉 is proven

from Gn , nor (b) some predicate π′ and evidence e ′ such that X ` π 	 π′

and 〈π′, e ′〉 is proven from Gn .

2. For each kind constraint (C : κi) ∈ X and each pair 〈C ~τ , e〉 consistent with

G0, τi ∈ Typeκi .

3. For each functional dependency constraint (C : Y Z) ∈ X and all pairs

〈C ~τ , e〉, 〈C ~υ, e ′〉 consistent with G0, ~τ 6= ~υ mod Z .

4. For each superclass (∀~t . π ⇒ π′) ∈ X , if there is a T ∈ GSubst(~t) such

that 〈T π, e〉 is consistent with G0, then there is some evidence e ′ such that

〈T π′, e ′〉 is consistent with G0.

Observe that the empty structure is trivially a valid initial structure; that, if G0 is a

valid initial structure for A | X , then from Condition (1) and Lemma 4.4, each Gn is

a well-formed model structure; and that the Gn are monotonically increasing. De-

fine I (G0) as the limit of the sequence G ,G1, . . . defined from G , and define the in-

duced model for A | X as the set {I (G0) |G0 is a valid initial structure for A | X }.

104

Lemma 4.7. Let A | X be a acceptable program, and let G be the induced model

of A | X . For all G ∈ G,G |= A | X .

Proof. Fix some G ∈ G; we show that G |= A | X . As G = I (G0) for some valid

initial structure G0, we know that G is the limit of some sequence of Gn . We

consider each case of the forcing rule for type class bases: G must model each of

the axioms, and each of the three varieties of class constraints.

� Fix some α ∈ A. We must show that for all π ∈ Preds(class(α)), G |= α|π,X .

Fix some such π, and let α′ be α|π,X . If α′ = ε, then G |= α′ by definition.

Alternatively, let α′ = ξ0; ξ1; ...; ξn ; ε where each ξi = (di : πi ⇐ Pi). Suppose

that for some i , G |= Pj for j < i , and there is an evidence expression e

such that G |= e : Pi . Then, for some Gn , we have that: first, for each Pj ,

some predicate π ∈ Pj is inconsistent with Gn ; and, second, that 〈(Pi)k , ek〉

is consistent with Gn for each element (Pi)k of Pi . Thus, from Definition 4.2,

〈πi , ei〉 is provable from Gn , where ei = d e if πi is positive, and • otherwise.

We treat the cases for positive and negative πi separately.

– If πi = C ~τ , then, we have that Gn+1(C)(~τ) = d e; that G(C)(~τ) = d e;

that G |= d e : C ~τ ; and thus that G |= α′.

– Alternatively, suppose that πi = C ~τ fails. Then, we have that (by

Lemma 4.3) for all G ′ such that Gn � G ′, πi is inconsistent with G ′;

that (by Lemma 4.5) there is no 〈πi , e〉 consistent with any such G ′;

that ~τ 6∈ dom(G ′)(C), so G |= • : πi ; and, therefore, that G |= α′.

� For each kind constraint (C : κi) ∈ X : if ~τ ∈ dom(G(C)), then ~τ ∈

dom(Gn(C)), and so C ~τ is either consistent with the initial structure G0,

consistent with the kind constraint by Condition (2) on the valid initial struc-

tures, or is the conclusion of some clause in Clauses(A), consistent with the

kind constraints by the well-kindedness check (Equation 4.5) of the accept-

ability of A | X .

105

� Fix some functional dependency constraint (C : Y Z) ∈ X and ~τ , ~υ ∈

dom(G(C)). Each type tuple is in the model either because it is proved from

some Gn , or because it is in the initial model G0. We have three cases:

– If both tuples are consistent with G0, then Condition (3) on the valid

initial structures ensures they do not violate the functional dependency

constraint.

– If one tuple is consistent with G0 and the other is proven from some

Gn , then condition (1) on the initial structure ensures that X 0 π 	π′,
and so π and π′ cannot violate the functional dependency constraints.

– Finally, if both are proven from some Gn , then by Lemma 4.5 they do

not violate the functional dependency constraint.

� Observe that for arbitrary model structure G and axioms A, because

G |= A ⇐⇒ (∀α ∈ A. G |= α),

we have that if A′ ⊆ A then G |= A =⇒ G |= A′. Fix some superclass

constraint (∀~t . π ⇒ π′) ∈ X , some S ∈ GSubst(~t), and some evidence value

e such that 〈S π, e〉 is consistent with G . By definition, 〈S π, e〉 is consistent

with G either because it is consistent with the initial structure G0 or because

it is proven from some Gn . If 〈S π, e〉 is consistent with G0, then Condition

(4) on valid initial structures ensures that there is some e ′ such that 〈S π′, e ′〉

is consistent with G0, and thus with G . Alternatively, suppose that 〈S π, e〉

is proven from Gn using some clause ξ. From the superclass satisfaction

check (Equation 4.7) of the acceptability of A | X , we have that there is

some ordering α1, α2, . . . , αi of a subset of the axioms in A such that ξ is a

clause of αi ; and, writing A′ for {αj | j < i},

preserves(ξi ,∀~t . π ⇒ π′,A′ | X).

106

From the definition of the preserves predicate (Equation 4.6) and the sound-

ness of the entailment relation (Theorem 4.12), we have that any if G |=

A′ | X and G |= S P then G |= S π. we have already shown that G |= A,

and so, by the observation, G |= A′; as we have assumed that G |= e : S π,

we can conclude that there is some e ′ such that G |= e ′ : S π′, and so

G |= (∀~t . π ⇒ π′).

The proof of Theorem 4.1 is immediate from Lemma 4.7 and from the existence

of at least one valid initial structure. This theorem can be seen as a soundness

result for the acceptability predicate. The converse, that any program with a

model is acceptable, is not true: for example, as mentioned in the discussion of

superclasses (§4.4.1), programs with circular requirements can be consistent, but

are not accepted by our definition of acceptability.

4.5 ENTAILMENT AND QUALIFIED TYPES

We next present proof rules for an entailment relation, by which the logic of type

class predicates (described over the prior sections) is integrated into the Habit

type system. Our proof rules are designed to allow efficient proof search during

type inference; thus, they are syntactic in nature, but incomplete with respect to

the semantics developed in the prior section. We will show, however, that our

entailment relation is sound with respect to our semantics, and that it meets the

criteria Jones establishes in his system of qualified types [28].

4.5.1 Entailment

The primary judgment of our proof system is the entailment relation

A | X ` P Q

asserting that any model of A | X that forces ground instances of the predicates

in P must force the corresponding ground instances of the predicates in Q . When

107

∀i . (A | X ` P Qi)
[Each]

A | X ` P Q

π ∈ P
[Assume]

A | X ` P π

(∀~t . π′ ⇒ π) ∈ X S ∈ Subst(~t) A | X ` P S π′
[Super]

A | X ` P S π

α ∈ A A | X , α ` P π
[Axiom]

A | X ` P π

Figure 4.2: Top-level deduction rules for predicate entailment.

Q is a singleton set {π}, we will write A | X ` P π. We present natural

deduction rules for this judgment in Figure 4.2. Rule Each allows the proof of

a conjunction of predicates by proving each conjunct individually. The remaining

rules each provide for proving an individual predicate: either because it is one

of the assumptions (Rule Assume), because it is a consequence of one of the

superclasses (Rule Super), or a consequence of one of the axioms (Rule Axiom).

We introduce a new judgment, A | X , α ` P π to capture that predicate π is a

consequence of axiom α. Deduction rules for this judgment are given in Figure 4.3,

and discussed in the following paragraphs. Note that, to simplify the notation, we

avoid repeating the basis A | X in each of the axiom judgments.

The first two rules prove the goal predicate from the clause at the head of the

axiom. Rule Match is natural: if the goal π matches the conclusion of a clause π′,

and the assumptions P are sufficient to prove the hypotheses P ′ of the clause, then

the clause proves the goal. Rule Excl-FD gives an alternative way a clause might

prove a goal, corresponding to the second interpretation of functional dependency

constraints (§4.3.3). While a functional dependency constraint does not of itself

include or exclude any particular tuples from a class, each tuple in a class with such

108

S ∈ Subst(~t) S π′ = π A | X ` P S P ′
[Match]

((d : ∀~t . π′ ⇐ P ′) ; α) ` P π

(Y Z) ∈ fdX (π) S ∈ Subst(~t) S π′ = π mod Z

S π′ 6= π A | X ` P P ′ π is negative
[Excl-FD]

((d : ∀~t . π′ ⇐ P ′) ; α) ` P π

(Y Z) ∈ fdX (π) S ∈ Subst(~t) S π′ = π mod Z

A | X ` P S P ′i α ` P π
[Step-Contra]

((d : ∀~t . π′ ⇐ P ′) ; α) ` P π

∀(Y Z) ∈ fdX (π).(π′ � π mod Z ∧ π′ � π mod Z)

α ` P π π′ is positive
[Step-Pos]

((d : ∀~t . π′ ⇐ P ′) ; α) ` P π

π′ � π π′ � π α ` P π π′ is negative
[Step-Neg]

((d : ∀~t . π′ ⇐ P ′) ; α) ` P π

Figure 4.3: Axiom-specific deduction rules for predicate entailment. Basis A | X

is global.

a constraint excludes all tuples that would violate the constraint. For example,

the instance

instance Elems [Int] Int

implicitly excludes predicates such as Elems [Int] Char, and thus provides a mech-

anism to prove its negation, Elems [Int] Char fails. This mechanism is captured

by Excl-FD: if the goal π is negative, and the clause proves that the complement

π of the goal is excluded from the class by a functional dependency, then it proves

the goal.

The remaining three rules prove the goal from the tail of the axiom. In each

109

case, we must first verify that the head will never prove the goal. Rule Step-

Contra handles the case in which the goal matches the conclusion of the current

clause up to some functional dependency: to verify that the clause does not apply,

we must disprove one of its hypotheses. Rules Step-Pos and Step-Neg address

the cases in which the goal does not match the conclusion of the current clause;

the need for two cases arises from the treatment of functional dependencies. When

trying to prove a positive predicate, such as Elems [Int] Char, it is not enough

to observe that the predicate does not match an instance like the example instance

for Elems [Int] Int above; we must ensure that it does not match modulo the

functional dependencies. In contrast, as functional dependencies only restrict what

is included in classes, not what is excluded, a similar check is not necessary to prove

negative predicates.

4.5.2 Properties of Entailment

In his theory of qualified types, Jones treats the entailment relation among pred-

icates abstractly, so long as certain assumptions are valid. In this section, we

demonstrate that the proof rules for instance chains built in the previous section

meet Jones’s criteria, justifying their use in his type system.

The first property we show is that entailment of a set of predicates is equiv-

alent to entailment of each predicate individually. Treating sets of predicates as

conjunctions, this has the form of a distributive law: informally, we prove that

P (π1 ∧ · · · ∧ πn) if and only if (P π1) ∧ · · · ∧ (P πn).

Theorem 4.8 (Distributivity of entailment). For any basis A | X , A | X ` P Q

if and only if ∀i .A | X ` P Qi .

Proof. Necessity is direct, by construction with proof rule Each. Sufficiency fol-

lows from an inductive argument on the height of the derivation. We give an

intuition for the argument; the cases are straightforward. Assume that Q contains

110

more than one predicate, and observe that the rules that discharge predicates—

Assume, Super, and Axiom—apply only to singleton sets of predicates. Thus,

the derivation of A | X ` P Q must begin with an application of rule Each,

with a subderivation of A | X ` P Qi for i < |Q |.

Second, we show that a set of predicates entails any of its subsets.

Theorem 4.9 (Monotonicity of entailment). For any basis A | X , P ⊇ Q =⇒

A | X ` P Q.

Proof. By construction: from P ⊇ Q , we know that each Qi ∈ P , and thus that

we can construct proofs A | X ` P Qi by rule Assume. Next, we can apply

rule Each to conclude that A | X ` P Q .

Third, we show that the entailment relation is transitive.

Theorem 4.10 (Transitivity of entailment). For any program A | X , if A | X `

P Q and A | X ` Q R, then A | X ` P R.

Proof. We proceed by induction over the derivation of A | X ` Q R. Cases

Each, Super and Axiom follow immediately from the inductive hypothesis: in

each case, the assumptions are irrelevant to the non-inductive hypotheses of the

judgment. In case Assume, we must show that some π ∈ Q follows from hypothe-

ses P . This follows from Theorem 4.8 and the assumption that A | X ` P Q .

Finally, we show that entailment respects polymorphism; that is, we show that

anything we can prove about predicates containing type variables also holds for

any instantiation of those type variables.

Theorem 4.11 (Closure under substitution). For any program A | X , if A | X `

P Q and T ∈ Subst(P ,Q), then A | X ` T P T Q.

Proof. The proof is by induction on the derivation of A | X ` P Q .

111

� Case Each follows from the inductive hypothesis.

� Case Assume is immediate: if π ∈ P , then T π ∈ T P .

� In case Super, given some superclass constraint (∀~t . π′ ⇒ π) ∈ X and

S ∈ Subst(~t), we have that, if T binds variables in P and S π, then T ◦ S ∈

Subst(~t), and that by the inductive hypothesis A | X ` T P T (S π′).

� In case Axiom, we proceed by induction on the derivation of A | X , α ` P

π. To align notation with the rules in Figure 4.3, we will assume that each

step in the derivation is of the form α′ ` P π, where α′ = ((d : ∀~t . π′ ⇐

P ′) ; α).

– Case Match. We are given some S ∈ Subst(~t) such that S π′ = π,

from which we have that T ◦ S ∈ Subst(~t), and that (T ◦ S) π′ = T π.

From the outer inductive hypothesis, we conclude that A | X ` T P

(T ◦ S) P ′, and thus that A | X , α′ ` T P T π.

– Case Excl-FD. The argument is identical to the prior case.

– Case Step-Contra. As in the prior cases, we are given some S ∈

Subst(~t) such that S π′ = π mod Z ; we can conclude that T ◦ S ∈

Subst(~t) and that (T ◦ S) π′ = T π mod Z . The outer inductive hy-

pothesis allows us to conclude that A | X ` T P (T ◦ S) P ′i , and the

inner inductive hypothesis provides that α ` T P T π, showing that

α′ ` T P T π.

– Case Step-Pos. We are given that, for all functional dependencies

(Y Z) ∈ fdX (π), π � π′ mod Z , that is, that there are no unifying

substitutions U0,U1 such that U0 π = U1 π
′ mod Z . From this, we can

conclude that there are no U ′0,U
′
1 such that U ′0 (T π) = U ′1 (T π′) mod

Z , as if there were then we could construct the original unifying substi-

tutions by U0 = U ′0 ◦ T and U1 = U ′1 ◦ T . Thus, we have that T π �

112

T π′ mod Z . The inner inductive hypothesis gives that α ` T P T π,

and so we can conclude that α′ ` T P T π.

– Case Step-Next. The argument is identical to the prior case, but

without reference to functional dependencies.

4.5.3 Soundness of Entailment

We now establish the soundness of the proof system. Intuitively, we wish to show

that, for any derivation proving A | X ` P Q , any model of the program A | X

and the hypotheses P must also model the conclusions Q ; that is, any theorem

of the proof system is a tautology of the logic. For arbitrary formulae φ, we will

write G |= φ to abbreviate ∀G ∈ G. G |= φ. We will write G |= π to abbreviate

∃e. G |= e : π, and similarly write G |= P to abbreviate ∃e. G |= e : P

Theorem 4.12 (Soundness of entailment). If there is a derivation A | X ` P Q,

then for any model G and ground substitution S ∈ GSubst(ftv(P ,Q)) such that

G |= S Q whenever G |= A | X and G |= S P.

Proof. Fix some S ∈ GSubst(ftv(P ,Q)), and let P̂ = S P and Q̂ = S Q . Fix a

model G such that G |= A | X and G |= P̂ . From Theorem 4.11, we have that

A | X ` P̂ Q̂ . We proceed by induction on this latter derivation.

� Case Each: from the definition of the forcing relation for contexts, we have

that

G |= Q̂ ⇐⇒ ∀i .(G |= Q̂i).

From the inductive hypothesis, we can conclude that G forces each of the Q̂i ;

thus, we conclude that G |= Q̂ .

� Case Assume: immediate.

� Case Super: we have that Q̂ is some singleton {π}, and that there is some

superclass (∀~t . π0 ⇒ π1) ∈ X and substitution S ∈ GSubst(~t) such that

113

S π1 = π. Because G |= X , the definition of the forcing relation for super-

classes ensures that G |= S π0 =⇒ G |= S π1. As we assume G |= P̂ , we

can apply the inductive hypothesis to conclude that G |= S π0. Thus, we

conclude that G |= S π1, that is, that G |= π.

� Case Axiom: we have that Q̂ is a singleton set {π}, and that there is a

derivation of A | X , α ` P̂ π. We begin by showing that, for an arbitrary

axiom α′, if we have a derivation of A | X , α′ ` P̂ π and G |= α|π,X , then

G |= π. We proceed by induction of the length of axiom α′ = ((d : ∀~t . π′ ⇐

P ′) ; α′′):

– Case Match: we have that there is some S ∈ GSubst(~t) such that

S π′ = π, and so we know that

α′|π,X = (d : π ⇐ S P ′) ; α′′|π,X .

From the assumption that G |= α|π,X , we can conclude that if G |= S P ,

then G |= π. We can then apply the outer inductive hypothesis to

conclude that G |= S P ′, and thus that G |= π.

– Case Excl-FD: by an identical argument to that in the previous case,

we have that there is some S such that

α′|π,X = (d : S π′ ⇐ S P ′) ; α′′|π,X ,

and that G |= S π′. However, as (Y Z) ∈ fdX (π), π = S π′ mod Z ,

but π 6= S π′, we have that X ` π 	 S π′. Finally, as we know that

π = C ~τ fails for some class C and types ~τ , the definition of the

forcing relation gives that, for any G ∈ G,

G |= π ⇐⇒ ∀G ′ � G . ~τ 6∈ dom(G ′(C))

and so

G |= π ⇐⇒ ∀G ∈ G. ~τ 6∈ dom(G(C)).

114

Because X ` π 	 π′ and G |= π′, Lemma 4.5 gives that there is no

G ∈ G and evidence e such that 〈π, e〉 is consistent with G , and thus

that G |= π.

– Case Step-Contra: by an identical argument to that in the previous

cases, we have that there is some S such that

α′|π,X = (d : π ⇐ S P ′) ; α′′|π,X .

The outer inductive hypothesis allows us to conclude that G |= S Pi .

Thus, from the assumption that G |= α′|π,X and the definition of the

forcing relation for axioms, we have that G |= α′′|π,X . Finally, applying

the inner inductive hypothesis, we have that G |= π.

– Case Step-Pos: from (π � π′∧π � π′) mod Z for all functional depen-

dencies Y Z ∈ fdX (π), we have that there is no ground substitution

S ∈ GSubst(~t) such that either S π′ = π or X ` S π′ 	 π. Thus,

α′|π,X = α′′|π,X , and we have that G |= π by the inductive hypothesis.

– Case Step-Neg: From π � π′ and π � π′, we have that there is no

S ∈ GSubst(~t) such that S π′ = π. Because π is negative, we have

X ` S π′ 	π only if S π′ = π; thus, we have that α′|π,X = α′′|π,X , and

G |= π follows from the inductive hypothesis.

Because we have that A | X , α ` P̂ π, and such a derivation must end with

either a use of rule Match or rule Excl-FD, we have that there is some

clause (d : ∀~t . π′ ⇐ P ′) of α and substitution S such that either π = S π′ or

X ` π 	 S π′. Thus, we can conclude that π ∈ Preds(α), and so from the

assumption that G |= A | X , we have that G |= α|π,X , and, by the above,

that G |= π.

The converse (completeness of entailment) is not true. For a simple example,

consider a program containing the axioms

115

instance C Int else C Bool else C t fails

instance D Int else D Bool else D t fails

The domain of the only semantics of class C is the set {Int,Bool}, and similarly

for class D, and thus any model of the program that models a ground instance of

C t must model the corresponding ground instance of D t . However, none of the

proof rules are sufficient to construct a derivation of C t D t .

4.6 RELATED WORK

Much of the previous work on the meaning of type classes has focussed on the

meaning of overloaded expressions, rather than the meaning or logical foundations

of the predicates themselves. We will discuss this work in the next chapter, in

which we construct our own semantics for overloaded expressions.

The form of our models of logic is due to Kripke’s models of intuitionistic and

modal logics [36]. The model existence proof for intuitionistic logic was originally

developed by Fitting [9]. Our proofs are less elegant than his because of our choice

of model structure; nevertheless, we were strongly inspired by his approach.

The semantics of type classes that we present is part of the folklore of Haskell,

but rarely written down. Harrison refers to such a semantics [18] in his discussion

of polymorphic overloading, but does not discuss its logical implications. Jones and

Diatcki present a notion of type classes corresponding to relations on types [33],

but do not describe the role of evidence, or the relationship between their model

and the predicate entailment relation.

Maier’s textbook [40] summarizes the theory of functional dependencies as used

in the database community, and defines functional dependencies for databases sim-

ilarly to our extension of the forcing relation to functional dependency constraints.

Jones [32] discusses the use of functional dependencies to improve type inference;

his improvement rules are justified by, and similar in form to, both the intuitive

116

notion and first formulation of the forcing rule. Sulzmann et al. [63] describe an al-

ternative approach to the interaction of functional dependencies and type inference,

via a translation into constraint-handling rules; unfortunately, their presentation

conflates properties of their translation, such as termination, with properties of

the relations themselves. For example, given a class

class F t u | t → u

The following two instances both violate GHC’s coverage condition, and thus gen-

erate the same error message, and are both accepted given GHC’s undecidable

instances flag:

instance F t u ⇒ F (Maybe t) (Maybe u)

instance F Int t

However, these instances have dramatically different consequences for the type

system. The first is rejected because GHC’s coverage check does not take functional

dependencies on instance hypotheses into account. Thus, while it may lead to

non-termination of their translation, it does not compromise the consistency of

the classes. The second instance, on the other hand, introduces arbitrary type

equalities, as it provides evidence for the predicates F Int t and F Int u for

arbitrary types t and u. This demonstrates the hazard of conflating properties

of the translation, such as the potential non-termination given the first instances,

with properties of the underlying relations, such as the inconsistency caused by

the second.

117

5. SEMANTICS FOR OVERLOADING

The previous chapters have described new type class mechanisms from both in-

tuitive and formal perspectives. This chapter completes the picture, developing

the semantics of a simple typed lambda calculus with overloading. We begin by

reviewing the type frame semantics for the simply-typed lambda calculus (§5.1).

We then describe Ohori’s [48] adaptation of type frame semantics to ML-style

polymorphism (§5.2), and Harrison’s [18] extension of Ohori’s approach to poly-

morphic recursion. We rely on Harrison’s extensions, even though polymorphic

recursion itself is orthogonal to overloading. Finally, we combine Ohori’s seman-

tics for polymorphism with the models of classes developed in the last chapter to

give a semantics for overloading (§5.3).

Each of these approaches is type-driven: we will give semantics to typings of

terms, not to terms directly. Thus, each section will follow a similar approach: we

will begin by giving the terms and types of the language under consideration, and

then proceed to a semantic mapping on typings.

5.1 SIMPLY-TYPED LAMBDA CALCULUS

The simply-typed lambda calculus is a simple, higher-order programming language

with notions of typed application and abstraction, and provides a foundation for

much work in the mathematical semantics of programming languages [16]. In this

section, we review type frames, one approach to giving semantics to the simply-

typed lambda calculus, which serves as the basis for Ohori’s semantics for ML-style

polymorphism and our semantics for overloading.

118

Term variable x ∈ Var Term constants k

Type constants K

Types τ, υ ::= K | τ → τ

Expressions M ,N ::= x | k | λx : τ.M | M N

Figure 5.1: Types and terms of the simply typed lambda calculus

(x : τ) ∈ Γ
[Var]

Γ ` x : τ

Γ, x : τ ` M : τ ′
[→ I]

Γ ` (λx : τ.M) : τ → τ ′
Γ ` M : τ → τ ′ Γ ` N : τ[→ E]

Γ ` (M N) : τ ′

Figure 5.2: Typing rules of the simply typed lambda calculus

The types and terms of the simply-typed lambda calculus are given in Fig-

ure 5.1. The expressions are variables, constants, abstractions and applications;

the types are constants and functions. We have augmented the system with term

constants k and type constants K , and have omitted type constructors, and thus

kinds. This simplifies our presentation, and thus allows us to focus on the type

rules relevant to polymorphism and overloading; the extension of this system to

include additional expression forms, such as conditionals, or more expressive types

is straightforward.

The typing rules of the simply-typed lambda calculus are given in Figure 5.2.

We assume a type environment Γ mapping variables and constructors to their

types; by Γ, x : τ we denote the typing environment identical to Γ for all variables

but x , which is now mapped to type τ .

A semantics for the simply-typed lambda calculus must then account for ab-

straction, application, and constants. An intuitive way to do this is via type

119

frames [11], which are in turn built up from more primitive constructs called pre-

frames. A pre-frame consists of:

� A function T typeJ·K on types, such that T typeJτK is a non-empty set providing

the interpretation of type τ ; and,

� A function Tτ,υ : T typeJτ → υK × T typeJτK → T typeJυK providing the inter-

pretation of the application of an element of the interpretation of τ → υ to

the interpretation of an element of τ .

These components are subject to the following criterion, called the extensionality

property :

� For any f , g ∈ T typeJτ → υK, if, for all x ∈ T typeJτK, Tτ,υ(f , x) = T τ,υ(g , x),

then f = g .

A pre-frame (T type,T) is extended to a frame by the addition of a mapping

T term providing the meanings of lambda calculus terms, or, more precisely, typings.

Formally, we define a Γ-environment η as a mapping from variables to values such

that η(x) ∈ T typeJτK whenever (x : τ) ∈ Γ. By η[x 7→ d], we mean the Γ-

environment η′ that agrees with η at all points but x , and such that η′(x) = d .

We can then define the interpretation function T term as a mapping from triples

(Γ,M , τ) such that Γ ` M : τ and Γ-environments η to values of T typeJτK such

that the following conditions hold:

1. T termJΓ, x , τKη = η(x)

2. T termJΓ,M N , υKη = Tτ,υ(T termJΓ,M , τ → υKη, T termJΓ,N , τKη)

3. Tτ,υ(T termJΓ, λx : τ.M , τ → υKη, d) = T termJ(Γ, x : τ),M , υK(η[x 7→ d])

To account for constants in a given frame (T typeJ·K, T termJ·K,T), we additionally

define mappings C type,C term such that for all constants k , Γ ` k : C type(k) and

120

Term variable x Term constants k

Type variables t Type constants K

Types τ, υ ::= t | K | τ → τ

Type schemes σ ::= τ | ∀t .σ

Expressions M ,N ::= x | k | λx .M | M N | let x = M in N

Figure 5.3: Types and terms of Core ML

C term(k) ∈ T typeJC type(k)K, and we extend the definition of T termJ·K such that

T termJΓ, k ,C type(k)Kη = C term(k).

We will frequently refer to a frame (T typeJ·K, T termJ·K,T) as the frame T , and will

omit the superscript identifiers when they are obvious from context.

5.2 A SIMPLE SEMANTICS FOR POLYMORPHISM

Next we discuss Core ML, an extension of the simply-typed lambda calculus to

support first-order polymorphism. The principal new features of Core ML are:

� Core ML types include type variables, in addition to the type constants and

type constructors of the simply typed lambda calculus. Following Damas [5],

but unlike Milner’s [41] or Ohori’s [48] presentations of Core ML, we intro-

duce type schemes, with explicit quantification of type variables, to type

polymorphic values.

� Core ML expressions include a let. . . in construct, used to introduce local

polymorphic bindings; λ-bound variables continue to be treated monomor-

phically.

We show the terms and types of Core ML in Figure 5.3

121

(x : σ) ∈ Γ
[Var]

Γ ` x : σ

Γ, x : τ ` M : τ ′
[→ I]

Γ ` (λx .M) : τ → τ ′
Γ ` M : τ → τ ′ Γ ` N : τ[→ E]

Γ ` (M N) : τ ′

Γ ` M : σ t 6∈ ftv(Γ)
[∀ I]

Γ ` M : ∀t .σ
Γ ` M : ∀t .σ[∀ E]

Γ ` M : [τ/t]σ

Γ, x : σ ` M : σ Γ, x : σ ` N : τ
[Let]

Γ ` (let x = M in N) : τ

Figure 5.4: Typing rules of Core ML

5.2.1 Core ML Typing

We give typing rules for Core ML in Figure 5.4. Again, like Damas and unlike

Milner and Ohori, we give separate rules ∀ I and ∀ E to account for the introduction

and elimination of quantifiers; this parallels our treatment of overloading in the

next section.

Ohori gives an unusual typing rule for let expressions, as follows:

Γ ` M : τ Γ ` [M /x]N : υ
[Let-Ohori]

Γ ` (let x = M in N) : υ

This simplifies his treatment of the Core ML type system: only λ-bound vari-

ables appear in the type environment Γ. As λ-bound variables are necessarily

monomorphic, the variable environment in his semantics need only contain for

monomorphically typed values; similarly, while the bound value in a let expres-

sion may have a generic type, each of its uses will have a monomorphic type (one of

the instances of its generic type). Thus, Ohori’s approach specifies the semantics

of polymorphic code without having to give a meaning to polymorphic expressions

directly.

We could take a similar approach to the typing of overloaded programs, by

122

replacing each use of an overloaded function with a suitably monotyped version of

the function, an approach similar to Gaster’s semantics of overloading [12]. How-

ever, we find this somewhat unsatisfying. As our focus is on the semantics of

overloading, we would prefer to give a semantics to class methods directly, rather

than by inlining method implementations. Thus, we adapt Harrison’s extension

of Ohori’s semantics (described in the following section), which allows us to pre-

serve much of the simplicity of Ohori’s style, while directly providing semantics to

polymorphic (and, in the following section, overloaded) expressions.

5.2.2 Type Frames for Polymorphism

Ohori’s approach to polymorphism is appealingly simple: the meaning of a poly-

morphic expression is a map from its ground types to its meaning at each ground

type. Its meanings at ground types, in turn, can be given in any frame model of

the typed lambda calculus. Harrison [18] extends this framework to describe poly-

morphic recursion, an extension that we will also use to describe overloading. The

remainder of this section reviews Harrison’s extension, albeit with minor changes

of notation for our setting.

Frame objects contain just enough information to model abstraction and ap-

plication. To permit the solution of polymorphic recursive equations, Harrison

extends the notion of a type frame by requiring that each frame object T JτK is

also a pointed, complete partial order (pcpo). Having done so, he demonstrates

that type-indexed sets, as used in the Ohori semantics, also form a pointed cpo.

We begin by defining a pcpo frame as a tuple

〈T typeJ·K, T termJ·K,Tτ,υ,vτ ,tτ ,⊥τ 〉,

where 〈T typeJ·K, T termJ·K,Tτ,υ〉 is a type frame, and each set T JτK is a pcpo with

respect to vτ , tτ and ⊥τ . We define the ground instances of a type scheme σ,

123

written bσc, by:

bσc = {S τ | σ = ∀t0. . . .∀tn .τ, S ∈ GSubst(t0, . . . , tn)}.

Alternatively, we could give a definition of the ground instances of scheme type

recursively, matching the recursive structure of the syntax of type schemes:

bτc = {τ}

b∀t .σc =
⋃

τ∈GType

b[τ/t]σc.

Now, for a given pcpo frame T , we can define the semantics of a type scheme

T schemeJσK in terms of the ground instances of σ:

T schemeJσK = Π(τ ∈ bσc).T typeJτK.

For example, the identity function λx .x has the type scheme ∀t .t → t . Therefore,

we would expect the semantics of the identity function to be a map from the ground

instances of its type to the semantics of the simply-typed identity function at each

type. We would expect its semantics to include the pair

〈Int → Int , T termJ∅, λx : Int .x , Int → IntK〉

to account for the Int → Int ground instance of its type scheme; the pair

〈Bool → Bool , T termJ∅, λx : Bool .x ,Bool → BoolK〉

to account for the Bool → Bool ground instance of its type scheme; and so forth.

Note that if σ has no quantifiers, and thus bσc = {τ} for some type τ , then we

have that

T schemeJσK = {{〈τ, b〉} | b ∈ T typeJτK},

and so an element of T schemeJτK is a singleton map, not an element of T typeJτK.

As before, we will write T JσK instead of T schemeJσK when there is no ambiguity.

Harrison then proves the following theorem.

124

Theorem 5.1 (Harrison). Let T be a pcpo frame. Then, for any type scheme σ,

T JσK is a pointed cpo where:

� For any f , g ∈ T JσK, f vσ g ⇐⇒ (∀τ ∈ bσc. f τ vτ g τ);

� The bottom element ⊥σ is defined to be {〈τ,⊥τ 〉 | τ ∈ bσc}; and,

� The least upper bound of an ascending chain {Xi} ⊆ T JσK is {〈τ, uτ 〉 | τ ∈

bσc, uτ = tτ (Xi τ)}.

We can define continuous functions and least fixed points for sets T JσK in the usual

fashion:

� A function f : T JσK → T Jσ′K is continuous if f (tσXi) = tσ′(f (Xi)) for all

directed chains Xi in T JσK.

� The fixed point of a continuous function f : T JσK → T JσK is defined by

fix (f) = tσ(f n(⊥σ)), and is the least value such that fix f = f (fix f).

5.2.3 Semantics of Polymorphic Expressions

We can now give a semantics for the expressions of Core ML. For some type

environment Γ and substitution S ∈ GSubst(ftv(Γ)), we define an S Γ-environment

η as a mapping from variables to values such that η(x) ∈ T schemeJ(S σ)K for each

assignment (x : σ) in Γ. Given a pcpo frame T , a derivation ∆ of Γ ` M : σ, a

ground substitution S ∈ GSubst(ftv(Γ, σ)), and an S Γ-environment η, we define

the interpretation T J∆KSη by cases, as follows.

� Case Var: we have a derivation of the form

(x : σ) ∈ Γ
∆ =

Γ ` x : σ

and define:

T J∆KSη = η(x).

125

Because η is a S Γ-environment, and (x : σ) ∈ Γ, we can conclude that

η(x) ∈ T JS σK and so T J∆KSη ∈ T JS σK.

� Case → I: we have a derivation of the form

...∆1 =
Γ, x : τ ` M : τ ′

∆ =
Γ ` (λx .M) : τ → τ ′

Let υ = S τ and υ′ = S τ ′, and define:

T J∆KSη = {〈υ → υ′, f 〉}

such that f ∈ T Jυ → υ′K,

and ∀d ∈ T JυK. Tυ,υ′(f , d) = T J∆1KS (η[x 7→ d]).

We assume that f is representable in T typeJυ → υ′K, and claim its continuity

in Lemma 5.2, below. Assuming that T J∆′KSη ∈ T schemeJυ′K, it follows that:

T J∆KSη ∈ T schemeJυ → υ′K = T JS σK.

� Case → E: we have a derivation of the form

...∆1 =
Γ ` M : τ → τ ′

...∆2 =
Γ ` N : τ∆ =

Γ ` (M N) : τ ′

Let υ = S τ and υ′ = S τ ′, and define

T J∆KSη = {〈υ′,Tυ,υ′(T J∆1KSη(υ → υ′), T J∆2KSη(υ))〉}.

By construction, T J∆KSη ∈ T schemeJυ′K = T JσK.

� Case ∀ I: we have a derivation of the form

...∆1 =
Γ ` M : σ t 6∈ ftv(σ)

∆ =
Γ ` M : ∀t .σ

126

Intuitively, we interpret a polymorphic expression as the map from ground

instances of its type to its interpretations at those types. As the interpreta-

tion of the subderivation ∆1 is already in the form of a such a map, we can

interpret ∆ as the union of the meanings of ∆1 for each ground instantiation

of the quantified variable t . Formally, we define

T J∆KSη =
⋃

τ∈GType

T J∆1K(S [t → τ])η.

Because σ = ∀t .σ′, we have that bσc =
⋃
τ∈GTypeb[τ/t]σ′c, and thus that

T JσK =
⋃
τ∈GType(T J[τ/t]σ′K). Thus, assuming that for ground types τ ,

T J∆′K(S [t 7→ τ])η ∈ T JS σ′K (that is, assuming the soundness of the type

system for the derivation ∆1), we have

T J∆KSη ∈

(⋃
τ∈GType

T JS σ′K

)
= T JS σK.

� Case ∀ E: we have a derivation of the form

...∆1 =
Γ ` M : ∀t .σ∆ =

Γ ` M : [τ/t]σ

By definition, b∀t .σc =
⋃
τ∈GTypebσc, and so b[τ/t]σc ⊆ b∀t .σc. Thus, the

interpretation of ∆ is a subset of the interpretation of ∆1; writing f |Y for

the restriction of a function f to some domain Y , we define:

T J∆KSη = (T J∆1KSη)|b[τ/t]σc.

Assuming that T J∆′KSη ∈ T JS (∀t .σ′)K, the argument about ground types

gives that T J∆KSη ∈ T JS σK.

� Case Let: we have a derivation of the form

...∆1 =
Γ ` M : σ

...∆2 =
Γ, x : σ ` N : τ

∆ =
Γ ` (let x = M in N) : τ

127

We begin by computing the value of the binding, taking the possibility of

recursion into account. We define a function

f : d 7→ T J∆1KS (η[x 7→ d])

whose continuity we assert in Lemma 5.2, below, and then define the value

of the binding by

b =
⊔

σ
f n(⊥σ)for n ∈ N.

Assuming that T J∆1KS (η[x 7→ d]) ∈ T JS σ′K, we have that b ∈ T JS σ′K.

Finally, we define:

T J∆KSη = T J∆2KS (η[x 7→ b]).

Similarly, assuming that T J∆2KS (η[x 7→ b] ∈ T schemeJτK, we have that

T J∆KSη ∈ T schemeJτK = T JσK.

The definition above relies on the following result to establish continued in

cases → I and Let:

Lemma 5.2. For all closed terms M such that ∆ is a derivation of Γ, x : σ ` M :

σ′, the function f : (d ∈ T JσK) 7→ T J∆KS (η[x 7→ d]) is continuous.

The proof is by induction on the term M , and follows Harrison’s argument exactly.

We conclude this section by arguing that the type system of Core ML accurately

approximates its semantics.

Theorem 5.3. For all derivations ∆ of Γ ` M : σ, for all ground substitutions

S ∈ GSubst(ftv(Γ, σ)), and for all S Γ-environments η, T J∆KSη ∈ T JS σK.

The proof is by induction over the height of the derivations; the justification for

the cases is included in their definitions above.

128

Term variable x ∈ Var Term constants k

Type variables t ∈ TVar Type constants K

Types τ, υ ::= t | K | τ → τ

Qualified types ρ ::= τ | π ⇒ ρ

Type schemes σ ∈ Scheme ::= ρ | ∀t .σ

Expressions M ,N ∈ Expr ::= x | k | λx .M | M N

| let x = M in N

Method signatures Si ∈ Var ⇀ Pred × Scheme

Method implementations Im ∈ InstName × Var ⇀ Expr

Programs Pr ::= 〈A | X , Si , Im,M : τ〉

Figure 5.5: Types and terms of OML

5.3 A SIMPLE SEMANTICS FOR OVERLOADING

Harrison suggests that his approach to semantics for polymorphic recursion, as

described in the prior section, would extend naturally to describe type-class over-

loading. This section elaborates the intuitive notion he describes, based on Jones’s

theory of qualified types [28] and our semantics of type classes (from Chapter 4).

Figure 5.5 gives the terms and types of OML, an extension of the Core ML

language to include overloading. We extend the types of Core ML with qualified

types ρ, capturing the use of predicates in types. We must similarly extend the

terms of Core ML to allow the definition of overloaded values. One approach would

be to expand the grammar of expressions to include class and instance declarations;

such an approach is taken in Wadler and Blott’s semantics of type classes [70].

However, this approach makes such definitions local, in contrast to our global

approach to type class semantics, and introduces problems with principal typing,

as Wadler and Blott indicate in their discussion. We take an alternative approach,

129

(x : σ) ∈ Γ
[Var]

P | Γ ` x : σ

P | Γ, x : τ ` M : τ ′
[→ I]

P | Γ ` (λx .M) : τ → τ ′
P | Γ ` M : τ → τ ′ P | Γ ` N : τ

[→ E]
P | Γ ` (M N) : τ ′

P , π | Γ ` M : ρ
[⇒ I]

P | Γ ` M : π ⇒ ρ

P | Γ ` M : π ⇒ ρ P π
[⇒ E]

P | Γ ` M : ρ

P | Γ ` M : σ t 6∈ ftv(Γ,P)
[∀ I]

P | Γ ` M : ∀t .σ
P | Γ ` M : ∀t .σ

[∀ E]
P | Γ ` M : [τ/t]σ

P | Γ, x : σ ` M : σ P | Γ, x : σ ` N : τ
[Let]

P | Γ ` (let x = M in N) : τ

Figure 5.6: Expression typing rules of OML

introducing a new top-level construct, which we call programs. Programs contain

type class information, such as axioms and class constraints, the type signatures

of the class methods, the implementations provided by each instance, and, finally,

the body of the program. We leave implicit many syntactic restrictions on Habit

programs, such as the requirement that each instance contain a complete set of

method definitions, as they do not contribute to the semantics of overloaded values.

5.3.1 OML Typing

We begin with the typing of OML expressions; our treatment is unchanged from

Jones’s approach [28]. Typing judgments take the form

P | Γ ` M : σ,

where P is a set of predicates restricting the type variables in Γ and σ. The

typing rules for OML expressions are given in Figure 5.6. Rules ⇒ I and ⇒ E

describe the interaction between the predicate context P and qualified types ρ; we

leave implicit the type class basis A | X , as it is constant throughout the typing

130

judgments. Otherwise, the rules are minimally changed from the corresponding

typing rules of Core ML.

We represent programs by tuples 〈A | X , Si , Im,M : τ〉, where A | X , Si , and

Im capture the type class components of the program, and M is the program body

(see Figure 5.5 for specification of components Si , Im and M , and Figure 4.1 for

specification of A | X). In the source code of a Habit program, type class methods

are specified in class and instance declarations, such as the following:

class Eq t where (==) :: t → t → Bool

instance Eq (List t) if Eq t where (==) = . . .

We partition the information in the class and instance declarations into the first

three components of the program tuple. The logical content—axioms and class

constraints—are captured by the pair A | X . The method signatures are captured

in the mapping Si ; for this example, we would have that

Si((==)) = 〈Eq t , t → t → Bool〉

where we do not quantify over the variables appearing in the class predicate. Note

that, as they arise from the class definitions, each predicate in the range of Si

will be of the form C ~t for some class C and type variables t . The type scheme

of a class member may quantify over additional variables, or include additional

predicates, beyond those used in the class itself. For example, the Monad class has

the following definition:

class Monad m

where return :: a → m a

(>>=) :: m a → (a → m b) → m b

Note that the variable a in the type of return is not part of the Monad constraint.

Thus, we would expect that

Si(return) = 〈Monad m,∀a.a → m a〉.

131

The method implementations themselves are recorded in component Im, which

maps pairs of method and instance names to implementing expressions.

To assure that the method implementations are well typed, we must begin by

determining what type each such method implementation should have. This is

a combination of the defining instance, including its context, and the definition

of the method itself. For example, in the instance above, the body of the (==)

method should compare lists of arbitrary type t for equality (this arises from the

instance predicate Eq (List t) and the signature of (==)), given the assumption

Eq t (arising from the defining instance). That is, we would expect it to have the

type

∀t .Eq t ⇒ List t → List t → Bool.

We introduce abbreviations for the type scheme of each method and of each

method at each instance, assuming some program 〈A | X , Si , Im,M : τ〉. For each

method name x such that Si(x) = 〈π,∀~u.ρ〉, we define the type scheme for x by:

σx = ∀~t .∀~u. π ⇒ ρ,

or, equivalently, writing ρ as Q ⇒ τ , we have that

σx = ∀~t .∀~u. (π,Q)⇒ τ

where, in each case, ~t = ftv(π). Similarly, for each method x as above, and each

instance d such that 〈x , d〉 ∈ dom(Im), where (d : ∀~t ′. π′ ⇐ P) ∈ Clauses(A), and

there is some S ∈ Subst(ftv(π)) such that S π = π′, we define the type scheme for

x from d by:

σx ,d = ∀~t ′.∀~u. (P , S Q)⇒ S τ,

where ~t ′ = ftv(S π).

We give the typing rule for OML programs in Figure 5.7; the implicit type

class specification in the typing derivations of the implementations and of the

body is provided by the component A | X of the program. Intuitively, program

132

∀〈x , d〉 ∈ dom(Im). P | (Γ, x : σx) ` Im(x , d) : σx ,d

P | (Γ, x : σx) ` M : τ

P | Γ ` 〈A | X , Si , Im,M : τ〉

Figure 5.7: Program typing rule for OML

〈A | X , Si , Im,M : τ〉 is well typed under assumptions P and environment Γ if

each method implementation Im(x , d) has the type σx ,d , and if the main expression

has the declared type τ , assuming that each method x has type σx .

5.3.2 The Meaning of Qualified Types

To describe the meaning of overloaded expressions, we must begin with the meaning

of qualified types. Intuitively, qualifiers in types can be viewed as predicates in set

comprehensions—that is, the qualified type ∀t .Eq t ⇒ t → t → Bool describes

the set of types

{t → t → Bool | t ∈ Eq}.

However, existing approaches to semantics for overloading typically do not inter-

pret qualifiers in this fashion: Wadler and Blott [70], for instance, translate qual-

ifiers into dictionary arguments, while Jones [28] translates qualified types into a

calculus with explicit evidence abstraction and application.

Our approach, by contrast, preserves the intuitive notion of qualifiers. Given

some type class basis A | X , we define the ground instances of an OML type

scheme σ by:

bσc = {S τ | σ = (∀~t .P ⇒ τ), S ∈ GSubst(~t),A | X ` ∅ S P}.

133

As before, we can give an equivalent, recursive definition as follows:

bτc = {τ}

bπ ⇒ ρc =

bρc if A | X ` ∅ {π}

∅ otherwise

b∀t .σc =
⋃

τ∈GType

b[τ/t]σc.

In the typing judgments for OML, predicates can appear in both types and

contexts. To account for both sources of predicates, Jones introduces constrained

type schemes (P | σ), where P is a list of predicates and σ is an OML type

scheme; an unconstrained type scheme σ can be treated as the constrained scheme

(∅ | σ) (following typical convention, we regard the empty conjunction as true). We

can define the ground instances of constrained type schemes by a straightforward

extension of the definition for unconstrained schemes:

b(P | σ)c = {S τ | σ = (∀~t .Q ⇒ τ), S ∈ GSubst(~t),A | X ` ∅ (P , S Q)}.

We can now define the interpretation of a constrained OML type scheme (or,

equivalently, an unconstrained scheme or qualified type) in terms of its ground

instances, as we did for Core ML type schemes:

T schemeJ(P | σ)K = Π(τ ∈ b(P | σ)c). T typeJτK.

5.3.3 Semantics for Overloaded Expressions

We can describe the semantics of OML expressions in the same way we described

the semantics for Core ML expressions: by giving a semantics T J∆KSη for each

OML typing derivation ∆. As the majority of typing judgments are almost un-

changed from Core ML, the majority the cases are very similar. The semantics for

the new forms of derivation are as follows.

134

� Case ⇒ I: we have a derivation of the form
...∆1 =

P , π | Γ ` M : ρ
∆ =

P | Γ ` M : π ⇒ ρ

This rule does not affect the semantics of an expression; thus, we define:

T J∆KSη = T J∆1KSη.

Observe that b(S (P , π) | S ρ)c = b(S P | S (π ⇒ ρ))c. As such, if

T J∆1KSη ∈ T J(S (P , π) | S ρ)K,

then we must also have that

T J∆KSη ∈ T J(S P | S (π ⇒ ρ))K.

� Case ⇒ E: we have a derivation of the form
...∆1 =

P | Γ ` M : π ⇒ ρ P π
∆ =

P | Γ ` M : ρ

As with rule ⇒ I, this rule does not affect the semantics of expression M ,

and so we define:

T J∆KSη = T J∆1KSη.

From Theorem 4.11 and the hypothesis A | X ` P π, we have that for any

S ∈ GSubst(ftv(P , π)), A | X ` S P {S π}; thus, we can conclude that

b(S P | S (π ⇒ ρ))c = b(S P | S ρ)c. Finally, if we assume that T J∆1KSη ∈

T J(S P | S (π ⇒ ρ))K, then we can conclude that T J∆KSη ∈ T J(S P | S ρ)K.

It is straightforward to extend the soundness result for our semantics of Core

ML (Theorem 5.3) to a corresponding result for OML expressions.

Theorem 5.4. For all derivations P | Γ ` M : σ, ground substitutions S ∈

GSubst(P ,Γ, σ) and S Γ-environments η, T J∆KSη ∈ T J(S P | S σ)K.

The proof is by induction; again, the arguments for each case are included in the

definition above.

135

5.3.4 Semantics for OML Programs

This section builds on the semantics of expressions in the previous section to give

meaning to OML programs. Our approach is intuitively simple: as we have defined

a program to be a collection of instances and a main expression, we must build

the meanings of the methods from the instances, and then use the meanings of the

methods to define the meaning of the main expression. Formally, we extend the

interpretation function to typing derivations of programs as follows:

� Let ∆ be a derivation that program 〈A | X , Si , Im,M : τ〉 is well-typed given

assumptions P and environment Γ. Then we know that ∆ must be of the

form

...∆x ,d =
P | (Γ, x : σx) ` Im(x , d) : σx ,d

...∆M =
P | (Γ, x : σx) ` M : τ

∆ =
P | Γ ` 〈A | X , Si , Im,M : τ〉

with one derivation ∆x ,d for each pair 〈x , d〉 ∈ dom(Im). Enumerate the

methods in the program x1, x2, . . . , xm , and let

Σ = T Jσx1K× T Jσx2K× · · · × T Jσxm K.

For each method xi , we define a function fi : Σ→ T Jσxi K, approximating its

meaning, as follows:

fi(〈b1, b2, . . . , bm〉) =
⋃

〈xi ,d〉∈dom(Im)

T J∆xi ,dK∅(η[xj 7→ bj]),

and define function f : Σ→ Σ, approximating the meaning of all the methods

in the program, as

f (b) = 〈f1(b), f2(b), . . . , fm(b)〉.

We can now define a tuple b, such that the component bi is the meaning of

method xi , as follows:

b =
⊔

Σ
f n(⊥Σ).

136

Finally, we extend the interpretation function to programs by

T J〈A | X , Si , Im,M : τ〉Kη = T J∆M K∅(η[xi 7→ bi]).

As M is the entry point of the program, and is used monomorphically, the

interpretation of programs is not parameterized by a type substitution S .

Assuming that b ∈ (T Jσx1K×T Jσx2K×· · ·×T Jσxm K), Theorem 5.4 gives that

T J∆K ∈ T schemeJτK.

We must show that b ∈ (T Jσx1K × T Jσx2K × · · · × T Jσxm K). To do so, we will

demonstrate that the interpretation of the type scheme of a method is the union

of the interpretation of the type schemes of its instances. This will show that each

fi(b) ∈ T Jσxi K, from which the desired result follows immediately.

Lemma 5.5. The ground instances of the type scheme of a method x is the union

of its ground instances at each instance. That is,

bσxc =
⋃

〈x ,d〉∈dom(Im)

bσx ,dc.

Proof. Without loss of generality, assume that σx = ∀~t .(π,Q) ⇒ τ , where x is a

method of class(π). We prove that

bσxc =
⋃

〈d ,x〉∈dom(Im)

bσx ,dc

by the inclusions

bσxc ⊆
⋃

〈x ,d〉∈dom(Im)

bσx ,dc,

and

bσxc ⊇
⋃

〈x ,d〉∈dom(Im)

bσx ,dc.

We will show only the first inclusion; the second is by an identical argument. Fix

some υ ∈ bσxc. By definition, there is some S ∈ GSubst(~t) such that υ = S τ

and ∅ ` S π, S P . Because ∅ S π, there must be some (d : ∀~u. T π ⇐ P) ∈

137

Clauses(A) and substitution S ′ ∈ GSubst(~u) such that S π = S ′ π′ and ∅ ` S ′ P .

Now, we have that σx ,d = ∀~t ′.(P ,T Q) ⇒ T τ for some substitution T ; thus,

there is some T ′ ∈ GSubst(~t ′) such that υ = T ′ (T τ), S P = T ′ (T Q), and so

υ ∈ bσx ,dc.

Lemma 5.6. The interpretation of the type scheme of a method x is the union of

the interpretations of its type scheme at each instance. That is,

T Jσx K =
⋃

〈x ,d〉∈dom(Im)

T Jσx ,dK.

Proof. Recall that

T schemeJσx K = Π(τ ∈ bσxc).T typeJτK.

From Lemma 5.5, we have that

T schemeJσx K = Π

τ ∈ ⋃
〈x ,d〉∈dom(Im)

bσx ,dc

 .T typeJτK.

As T typeJ·K is a function, this is equivalent to

T schemeJσx K =
⋃

〈x ,d〉∈dom(Im)

Π(τ ∈ bσx ,dc).T typeJτK,

and finally, again from the definition of T schemeJ·K,

T schemeJσx K =
⋃

〈x ,d〉∈dom(Im)

T schemeJσx ,dK.

Finally, we can extend the soundness of our semantics of OML from expressions

(Theorem 5.4) to programs.

Theorem 5.7. If ∆ is a derivation of P | Γ ` 〈A | X , Si , Im,M : τ〉, then

T J∆K ∈ T schemeJτK.

The proof given in the definition of the meaning function in combination with

Lemma 5.6.

138

5.4 EXAMPLE: POLYMORPHIC IDENTITY FUNCTIONS

We conclude our discussion of the semantics of ad-hoc polymorphism with a brief

example. Figure 5.8 gives two definitions of a polymorphic identity function. The

first definition (id1) is the typical, parametric definition. The second (id2) is

based on ad-hoc polymorphism; the identity for functions is defined in terms of

the identity functions for the domain and range. We might expect that id1 and

id2 refer to the same function: for any expression x, we should expect both id1 x

and id2 x to be well-typed, and that Jid1 xK = JxK = Jid2 xK. However, previous

dictionary-passing approaches to semantics for ad-hoc polymorphism provide dif-

ferent denotations for id1 and id2, as id2 has an additional dictionary argument.

In this section, we will argue that our semantics gives these two definitions the

same denotation. By doing so, we will show, first, that our semantics is sufficient

to conclude non-trivial properties of programs, and, second, that it more closely

captures the intuitive meaning of ad-hoc polymorphism than previous dictionary-

passing approaches.

We intend to show that Jid1K = Jid2K. We begin by showing that they are

defined over the same domain; that is, that b∀t . t → tc = b∀u.Id2 u ⇒ u → uc.

By definition, we have

b∀t . t → tc = {τ → τ | τ ∈ GType}

and

b∀u. Id2 u ⇒ u → uc = {τ → τ | τ ∈ GType, ∅ Id2 τ}.

We show that ∅ Id2 τ for all types τ by induction on the structure of τ . In the

base case, we know that τ = K for some type constructor K . In this case, we have

τ � (t → u) and τ ∼ t , and so, by rules Step-Pos and Match, ∅ Id2 τ . In the

inductive case, we know that τ = τ0 → τ1 for some types τ0, τ1. In this case, we

have τ ∼ (t → u) with substitution [τ0/t , τ1/u] and, by the inductive hypothesis,

139

id1 :: t → t

id1 x = x

class Id2 t

where id2 :: t → t

instance Id2 (t → u) if Id2 t, Id2 u

where id2 f = id2 ◦ f ◦ id2

else Id2 t

where id2 x = x

Figure 5.8: Polymorphic identity function, defined using parametric (id1) and ad

hoc (id2) polymorphism

that ∅ Id2 τ0 and ∅ Id2 τ1. Thus, by rule Match, we can conclude that

∅ Id2 (τo → τ1), that is, that ∅ Id2 τ . Because ∅ Id2 τ for all ground types

τ , we have

{τ → τ | τ ∈ GType, ∅ Id2 τ} = {τ → τ | τ ∈ GType},

and so Jid1K and Jid2K are defined over the same domain.

Next, we show that Jid1K and Jid2K have the same value at each point in their

domain; that is, that for any type τ ∈ GType,

Jid1K(τ → τ) = Jid2K(τ → τ).

Again, we proceed by induction on the structure of τ . In the base case, we know

that τ = K for some base type K . From the proof of ∅ Id2 K , we have

Jid2K(K → K) = Jλx : K .xK. As Jid1K(K → K) = Jλx : K .xK, we have

Jid1K(K → K) = Jid2K(K → K).

140

In the inductive case, we know that τ = τ0 → τ1 for some types τ0 and τ1. From

the proof of ∅ Id2 (τ0 → τ1), we can conclude that

Jid2K(τ → τ) = Jλf : (τ0 → τ1).M ◦ f ◦ N K

for some simply typed expressions M and N such that JM K = Jid2K(τ1) and

JN K = Jid2K(τ2). The inductive hypothesis gives that Jid2K(τ1) = Jid1K(τ1) and

that Jid2K(τ0) = Jid1K(τ0), and thus that JM K = Jλx : τ1.xK and JN K = Jλx : τ0.xK.

By congruence, we have

Jid2K(τ → τ) = Jλf : (τ0 → τ1).(λx : τ1.x) ◦ f ◦ (λx : τ0.x)K.

Finally, assuming a standard definition of composition, and reducing, we have

Jid2K(τ → τ) = Jλf : (τ0 → τ1).f K

= Jλf : τ.f K

= Jid1K(τ → τ).

We have shown that Jid1K and Jid2K are defined over the same domain, and

that they have the same value at each point in their domain. Thus, we conclude

that Jid1K = Jid2K.

5.5 RELATED WORK

The semantics of polymorphism, in its various forms, has been studied extensively

over the past 50 years; this section, therefore, will provide an overview of that work

most relevant to ours instead of attempting to provide a comprehensive catalog.

Our approach begins with Ohori’s semantics of Core ML [48]. His semantics

is further developed than ours—in particular, he develops an equational theory of

Core ML, and proves the soundness of that theory, not just of the type system,

with respect to his semantics. We believe that exploring equational theories for

overloading would be a useful extension of this work (§7.3). Ohori’s approach

141

to the semantics of Core ML is somewhat unusual; more typical approaches in-

clude those of Milner [41] and Mitchell and Harper [43]. Milner’s semantics relies

on embedding Core ML expressions into an untyped language, including a dis-

tinguished value for type errors, and then proving that well-typed programs do

not evaluate to the error value. This approach was extended to handle recur-

sive type by MacQueen, Plotkin, and Sethi [39]. Mitchell and Harper embed core

ML expressions into a polymorphic lambda calculus with explicit type abstraction

and application, in the style of Girard’s System F [15] or Reynold’s polymorphic

lambda calculus [52]. They also provide a treatment of the ML module system,

an important consideration in the semantics of Standard ML, but not relevant to

this discussion. Ohori identifies reasons to prefer his approach over either that of

Milner or that of Harper and Mitchell: both approaches use a semantic domain

with far more values than correspond to values of ML, either because (in the un-

typed case) those values would not be well-typed, or (in the explicit typed case)

they differ only in the type-level operations.

While Ohori’s approach describes the semantics of polymorphism, he does not

represent polymorphic values directly, which leads to an unusual treatment of the

typing of let expression (§5.2.1). Harrison extends Ohori’s approach to treat poly-

morphic recursion [18]; in doing so, he provides a representation of polymorphic

values. Harrison suggests that his approach would be applicable to type class-based

overloading, but does not develop the idea further.

The semantics of type class-based overloading has also received significant at-

tention. Wadler and Blott [70] initially described the meaning of type classes using

a “dictionary-passing translation”, in which overloaded expressions are parameter-

ized by type-specific implementations of class methods. Applying their approach

to the full Haskell language, however, requires a target language with more com-

plex types than their source language. For example, the Num class, defined in the

Haskell prelude, includes a fromIntegral method, as follows.

142

class Num t

where fromIntegral :: Integral u ⇒ u → t

. . .

Thus, a dictionary for Num t must itself contain a polymorphic value for the

fromIntegral method, to allow for different instantiations of u. Such values cannot

be defined in Haskell 98. A similar problem arises in the extension of type classes

to constructor classes [27]. For example, in translating the Monad class:

class Monad m

where return :: a → m a

(>>=) :: m a → (a → m b) → m b

the dictionary for Monad τ must contain polymorphic values for the return and

(>>=) methods. In their formal treatment, Wadler and Blott give a form of class

and instance declaration that allows local instances. While this does not pose

problems with their semantics, it introduces type-system difficulties, including a

loss of principal types.

In his semantics of overloading [28], Jones generalized the treatment of evi-

dence by translating from a language with overloading (OML) to a language with

explicit evidence abstraction and application. Jones highlights another difficulty

of translation-based approaches: that, as evidence abstraction and application are

not syntax directed (cf., typing rules ⇒ I and ⇒ E in our presentation of OML),

there can be many distinct translations of a single OML term. He then shows that,

given suitable assumptions on the predicate system, if a term has an unambiguous

type, then its translations are all equivalent [25]. Jones does not provide a seman-

tics of the language with explicit evidence abstraction and application; indeed,

such a semantics could not usefully be defined without choosing a particular form

of predicate, and thus a particular form of evidence. Gaster [13] adapts Ohori’s

approach to provide such a semantics for type classes. In contrast to our approach,

143

Gaster assumes a translation to explicit evidence application and abstraction and

still relies on treating dictionaries as values in the target language. Thus, as with

Wadler and Blott’s semantics, his approach is not directly applicable to classes

such as Num or Monad.

Odersky, Wadler and Wehr [47] propose an alternative formulation of over-

loading, including a type system and type inference algorithm, and a ideal-based

semantics of qualified types. However, their approach requires a substantial re-

striction to the types of overloaded values—each must be of the form t → τ , where

variable t is the constrained variable. This approach rules out several functions

in the Haskell prelude—such as the fromIntegral function described above, and

obviously does not adapt to multi-parameter type classes. Many of the examples

in this dissertation, such as the inj and (?) functions (§3.4), are not of this form.

While ML modules and type classes serve different purposes in programming,

the dictionary-passing implementation of type classes looks similar enough to some

uses of modules that to have encouraged several studies of the parallels between

modules and type classes themselves. Dreyer et al. formalize such an approach,

called modular type classes [8]. Despite the parallels, however, many features of

Haskell-style type classes are complicated in this framework. For example, super-

classes are implemented by building combinations of structures. This is similar to,

if slightly more complex than, the method of embedding superclass dictionaries

in subclass dictionaries commonly used in Haskell compilers. However, while the

implementation of Haskell superclasses is managed by the compiler, Dreyer et al’s

encoding requires the programmer to manipulate such embeddings directly. Many

properties of type classes are only valid locally with modular type classes—for ex-

ample, coherence and consistency properties could only established for a particular

collection of canonical instances, which is a local property. Finally, this approach

effectively defines the semantics of type classes in terms of the semantics of ML

modules, arguably a more complex setting.

144

Devriese and Piessens describe an implicit argument mechanism for Agda [6],

which they call instance arguments, and claim that it provides an encoding of type

classes. Their encoding of instances is similar to that of Dreyer et al., and shares

many of that encoding’s infelicities compared to Haskell type classes. Additionally,

their mechanism for selecting values for implicit arguments includes no aspect of

instance search: thus, for example, each use of a qualified instance (such as that for

Eq (List t) must be explicitly constructed. Finally, as Agda’s semantics have not

been formalized, their mechanism currently provides only an intuitive argument

for the meaning of values with instance parameters.

145

6. THE HABIT PREDICATE SOLVER

This chapter describes the Habit predicate solver, a component of our Habit com-

piler that, through interaction with the typechecker, implements the key type class

features described in the previous chapters. We begin by discussing the functional-

ity of the solver. While our semantics provides a sensible basis for reasoning about

the OML type system, and the meaning of overloaded expressions, it relies on

mathematical structures (in particular, infinite maps) that do not map directly to

an implementation. We describe an alternative interpretation of overloading that is

both faithful to our semantics and practical for compilation purposes (§6.1). Next,

we describe additional functionality provided by the solver: simplification (§6.2),

which attempts to reduce the complexity of inferred predicate sets, and improve-

ment (§6.3), which computes types equalities that must hold for given sets of

predicates to hold. Finally, we discuss some of the structures and techniques used

in the solver, and describe some of the concerns that arose during its implementa-

tion (§6.4).

6.1 ENTAILMENT AND EVIDENCE

Our semantics of overloading is based on an enumeration of the meaning of an over-

loaded value at each of its possible ground types. However, in practice, we would

not expect an implementation of Habit to generate such an (infinite) enumeration,

either during compilation or at run-time. For example, consider a program con-

taining the typical instances of the Eq class for integers and lists (§2.2), and the

main expression:

main = [1, 2] == [2, 1]

146

Our semantics for the equality function (==) in such a program is indexed by

every type in the Eq class; as we discussed before, such a set is infinite. Thus, we

could not hope to include the entire semantics of (==) in our compiled program.

However, we could observe that only a finite number of those instances are required

for the main expression, and transform the original program into the following

finite, overloading-free version:

eqInt x y = isZero (x - y)

eqListInt [] [] = True

eqListInt (x:xs) (y:ys) = eqInt x y && eqListInt xs ys

eqListInt _ _ = False

main = eqListInt [1, 2] [2, 1]

In the Habit compiler, we implement this transformation in two steps. First,

during type checking, we annotate expressions with evidence abstractions and ap-

plications; second, following type inference, a compiler pass called specialization

selects type-specific implementations of overloaded values. Our approach thus

has the flavor of the dictionary-passing translation that is typically used to de-

scribe or implement Haskell type classes, but with an additional compile-time

step to eliminate any direct run-time representation of overloading or dictionaries.

Dictionary-passing translation has been previously described in detail, by Wadler

and Blott [70], Jones [28], and others; we will adopt Jones’s treatment, as we

did his type system for overloading. Jones has also described a similar scheme

for compile-time dictionary elimination via partial evaluation [29]. Our discussion

will thus focus on the interpretation of the predicate system necessary to integrate

with these existing approaches.

147

Jones describes his translation-based semantics as follows. He begins by defin-

ing a language, called OP, that extends a typed lambda calculus with explicit

evidence abstraction (λev .M) and application (M e). He then provides a type-

based translation from OML to OP, extending the OML typing judgment

P | Γ ` M : σ

to pair an identifier vi with each predicate in Pi in P , and to include a translation

M ′, in OP, of the source OML term M :

P | Γ ` M ↪→ M ′ : σ

where M ′ is an OP term. This translation is largely straightforward; for example,

the application rule is extended as follows:

: P | Γ ` M ↪→ M ′ : υ → τ : P | Γ ` N ↪→ N ′ : υ
[→ E]

P | Γ ` M N ↪→ (M ′N ′) : τ

The more interesting rules are those that introduce and eliminate predicates in

types. Rule ⇒ I, for example, corresponds to evidence abstraction:

P , v : π | Γ ` M ↪→ M ′ : ρ
[⇒ I]

P | Γ ` M ↪→ (λev .M ′) : π ⇒ ρ

Rule ⇒ E corresponds to evidence application: for the term M to have a type

π ⇒ ρ, there must have been some use of rule ⇒ I, and thus, in the translation of

M , some evidence abstraction. If we can prove π from P , then we can translate

expression M to an application of the translation of M to the evidence for π.

P | Γ ` M ↪→ M ′ : π ⇒ ρ P e : π
[⇒ E]

P | Γ ` M ↪→ (M ′ e) : ρ

To describe the computation of evidence for π, Jones relies on an evidence-anno-

tated version of the entailment relation, of the form:

P e : π,

148

where, as in the typing judgment, each predicate in Pi ∈ P is paired with some

identifier vi . Intuitively, a derivation of this relation denotes that, if evidence for

each of the Pi is substituted for each the of the vi in e, then the resulting expression

is evidence for π.

We might hope to take a similar approach in our setting by similarly annotating

our entailment relation (§4.5) based on the evidence expressions we developed as

part of our semantics of classes (§4.2). There are two obstacles to this approach.

First, our evidence expressions do not account for hypotheses, as they lack any

form of variable. More significantly, we do not represent all forms of proof directly

in the evidence structure. This is irrelevant in some cases: for example, while

there is no evidence expression that explicitly corresponds to excluding a predicate

via functional dependences (Rule Excl-FD), such an argument can only prove

negative predicates, which already have uniform evidence expressions. On the

other hand, superclass constraints can (only) be used to prove positive predicates,

but there is no uniform evidence expression in this case. As an illustration, consider

the entailment

Ord t Eq t .

Assuming the standard superclass relationship between the Eq and Ord classes, we

would expect this entailment to hold, and indeed, we can construct such a deriva-

tion (using rules Super and Assume). However, there is no uniform construction

of an evidence expression for Eq t from an evidence expression for Ord t .

One approach to these difficulties would be to define extended evidence expres-

sions, augmenting the original form of evidence expressions with notions such as

assumptions and superclasses. We could then define both a new set of proof rules,

extended with evidence annotations, and a translation from the extended to the

original evidence expressions. However, this approach is verbose (as it requires

restating the entailment relation). Instead, we observe that each of the new forms

of evidence corresponds to a particular proof mechanism. Thus, we can define a

149

meaning function J·K on entailment derivations, such that if ∆ is a derivation of

P Q , then J∆K is a function from evidence for P to evidence for Q . This function

can then be used in the place of the evidence value in Jones’s scheme; that is, rule

⇒ E would have the form

P | Γ ` M ↪→ M ′ : π ⇒ ρ P π
[⇒-E]

P | Γ ` M ↪→ (M ′ J∆K) : ρ

where ∆ is the derivation of P π.

Let ∆ be a derivation of A | X ` P Q or of A | X , α ` P π, where we

assume that valid(A | X), and let e be evidence for P . We define J∆Ke by cases,

as follows. We begin with the cases for A | X ` P Q .

� Case Each: we have a derivation of the form:

∆ =

∆1 =
...

A | X ` P Q1

· · · ∆n =
...

A | X ` P Qn

A | X ` P {Q1, . . . ,Qn}

We define

J∆Ke = 〈J∆1Ke, . . . , J∆nKe〉.

� Case Assume: we have a derivation of A | X ` P π, where π ∈ P . We

define J∆Ke = ei such that π is the i th predicate in P .

� Case Super: we have a derivation of the form

∀~t . π′ ⇒ π ∈ X S ∈ GSubst(~t)

· · ·∆1 =
A | X ` P S π′

∆ =
A | X ` P S π

The structure of superclasses requires that π′ is positive; thus, we have that

J∆1Ke cannot be • (which proves negative predicates), nor can it be some

tuple 〈ei〉 (which proves multiple predicates), and so we must have that

J∆1Ke = d e ′ for some evidence constructor d and evidence expression e ′.

Because d e ′ is evidence for S π′, we can conclude that:

150

– (d : ∀~u. πd ⇐ Pd) ∈ Clauses(A) (where we assume that the ~u do not

appear in S π or S π′);

– There is some T ∈ Subst(~u) such that T πd = S π′; and,

– e ′ is evidence for T Pd .

We can now appeal to the acceptability of A | X to construct evidence for

π. Observe that, because S π′ = T πd , there is some most general unifier

U such that U π′ = Uπd , and both S and T factor over U . From the

clause preservation check (Equation 4.6), then, we have that there is some

derivation ∆d of A | X ` U P U π. Because entailment is closed under

substitution (Theorem 4.11), we have that there is some derivation ∆′d of

A | X ` T Pd S π. Finally, having described the computation of ∆′d and e ′

from our original derivation ∆ and evidence e, we can define J∆Ke = J∆′dKe ′.

� Case Axiom: we have a derivation of the form:

α ∈ A

...∆1 =
A | X , α ` P π

∆ =
A | X ` P π

We define J∆Ke = J∆1Ke.

We continue with the cases for A | X , α ` P π.

� Case Match: we have a derivation of the form

S ∈ Subst(~t) S π′ = π

...∆1 =
A | X ` P S P ′

∆ =
((d : ∀~t . π′ ⇐ P ′) ; α) ` P π

If π is positive, we define J∆Ke = d (J∆1Ke); otherwise, we define J∆Ke = •.

� If derivation ∆ is by rule Excl-FD, we have that goal predicate π is negative,

and so define J∆Ke = •.

151

� A derivation ∆ by any of the remaining cases (for rules Step-Contra,

Step-Pos, and Step-Neg) has a subderivation ∆1 of α ` P π; in each

case, we define J∆Ke = J∆1Ke.

We show that this interpretation of the entailment relation is consistent with

our models of type classes, and thus with our semantics of overloading.

Theorem 6.1. If ∆ is a derivation of A | X ` P Q, for ground predicates P and

Q, and G is some model such that G |= A | X and G |= e : P, then G |= J∆Ke : Q.

The proof is by induction over the structure of the derivation of A | X ` P Q ;

each case is immediate from the definitions of the meaning function (in this section)

and the forcing relation (§4.3).

6.2 SIMPLIFICATION

The implementation of the Habit predicate solver also provides functionality be-

yond checking predicate entailments. One such function is context simplification.

Type inference for a type system like OML may generate types that include re-

peated or equivalent predicates. Jones gives a collection of examples in his discus-

sion of context simplification [31], and we reproduce some of them here.

� Given a term such as (λx y z → x + y + z) type inference may infer two

different copies of the constraint Num t , where t is the type of parameters

x, y, and z.

� Alternatively, given a term such as (λx y → x + y == 1), type inference

might infer both the constraint Num t , arising from the use of (+), and

Eq t , arising from the use of (==). However, there is (typically) a superclass

constraint ∀t . Num t ⇒ Eq t , so the context consisting of both constraints

is equivalent to the context containing only the Num constraint.

152

Similarly, inferred types may include either trivially provable, or contradicted pred-

icates. Again, we draw on Jones’s examples.

� A term such as (λx → x == 'c') would give rise to a constraint Eq Char;

however, such an instance is (typically) present, and so the constraint could

be discharged instead of included in the inferred type.

� Alternatively, a term such as (λf g x → f == g || f x == g x) would

give rise to a constraint Eq (a → b) where a → b is the type of arguments

f and g. However, in Habit, we expect an instance Eq (a → b) fails, as

equality for functions is not, in general, decidable, so we could safely indicate

a type error instead of inferring an unsatisfiable constraint for this term.

� Finally, a term (λc → c + 'a') would give rise to a constraint Num Char,

for which there is typically no instance. Jones argues that this term could

be seen as a type error—as it assumes a concrete instance that does not

exist—but could also be seen as being perfectly well typed, if only usable in

a context in which such an instance has been defined.

The Haskell Report places restrictions on the form of contexts, ensured by

a process called context reduction, that can help to resolve some of the above

issues [49]. These restrictions require that each predicate in a type must either

be of the form C t or of the form C (t τ1 τ2 . . .), where, in each case, t is some

type variable. Applying this approach to Habit would resolve many of the issues

raised above: for example, neither the predicates Num Int nor Num Char is of the

necessary form, and so must be either discharged (in the first case), or lead to a type

error (in the second). This process can also require the application of instances to

some contexts. For example, the predicate Eq (a, b) is not of the required form, and

so would have to be reduced to the pair of predicates (Eq a,Eq b) (assuming the

typical instance of Eq for pairs). However, this criterion does not extend naturally

to the features of the Habit class system.

153

� It is not immediately clear how to extend this criterion to multi-parameter

type classes, such as the (:<:) class in our example of extensible data types

(§3.4). The most obvious approach might be to require that each argument

be of one of the approved forms (that is, either a type variable t or the ap-

plication of a type variable t τ1 However, this would exclude constraints

such as Int :<: t , which are integral to the utility of the (:<:) class.

� Context reduction also interacts poorly with instance chains. For example,

consider the instance chain

instance C [Int]

else C [t] if C t

With this chain, it is not possible to reduce a predicate C [t] to a predicate of

the desired form without first knowing that instantiation of type t . Similar

problems arise in Haskell extended with overlapping instances.

As a consequence, the definition of the Habit language provides no such restrictions

on the form of contexts, and defines no context simplification process.

We believe it is still valuable to provide predicate simplification in our imple-

mentation, however, both to (in many cases) improve the presentation of inferred

types, and to avoid duplicating solving effort. We define simplification rules for a

predicate set P as follows:

1. We eliminate from P any predicates that are either duplicated, or that are

consequences of the superclass constraints and other predicates in P , or that

can be proven from the axioms and the other predicates in P .

2. We replace a predicate π by the sequence Q if Q are the hypotheses of the

only axiom clause that can prove π. Formally, we replace π by Q if there is

some axiom α = ξ1; ξ2; . . . and some i such that:

154

� Each clause ξj = (dj : ∀~tJ . πj ⇐ Pj) with j < i cannot apply to

π, either because it neither matches nor contradicts π, or because the

appropriate instantiation of one of the predicates in Pj is inconsistent

with the axioms or the other predicates in P .

� In clause ξi = (di : ∀~ti . πi ⇐ Pi), there is some S ∈ Subst(~ti) such that

S πi = π and S Pi = Q .

� Each clause ξj with j > i cannot apply to π, because it neither matches

nor contradicts π.

We define the simplifications of P , written simpl(P), as the least set such that

� P ∈ simpl(P); and,

� If Q ∈ simpl(P) and Q ′ arises from Q by one of the simplification rules, then

Q ′ ∈ simpl(P).

We can show that simplification does not change the meaning of type schemes:

Theorem 6.2. For any valid program A | X , context P, and Q ∈ simpl(P), we

have both that A | X ` P Q and that A | X ` Q P.

From the definition of simpl(P), we have that, if Q ∈ simpl(P), then there is some

sequence P ,Q1,Q2, . . . ,Q such that each element of the sequence is in simpl(P)

and each element arises from the preceding one by an application of one of the

simplification rules. The proof is by induction over the length of this sequence;

each step is immediate from the definition of the simplification rules and of the

entailment relation (§4.5).

This process may seem complex. However, its implementation is quite direct,

as it consists of the same steps that are used to discharge predicates. Thus, our

concrete implementation of simplifying a collection of predicates P amounts to

attempting to solve predicates P and observing the result. Should the solver have

155

disproved any of the predicates in P , we indicate a type error. Otherwise, we

return the final goals the solver was unable to prove (after checking that later

clauses cannot apply).

6.3 IMPROVEMENT

Another function of the Habit predicate solver is computing improving substitu-

tions, which capture type equalities (represented by substitutions) that must hold

for given predicates to be satisfiable. In our current implementation of the Habit

class system, improving substitutions arise exclusively from functional dependen-

cies; we describe an additional source of improvements as future work (§7.4). For

example, the Habit prelude includes a class

class BitSize t n | t → n where . . .

where BitSize t n holds if a value of type t can be represented in n bits. Typical

instances of this class include

instance BitSize Unsigned 32

for unsigned integer values, and

instance BitSize (Bit n) n

for bit vectors of length n. Given these instances, consider an entailment such

as ∅ BitSize Unsigned m. We cannot discharge this predicate from the given

instances by any of the rules for entailment: in particular, there is no substitution

for the type variables of the BitSize instance for Unsigned such that 32 matches

m. However, from the functional dependency constraint on the BitSize class, and

because we can prove BitSize Unsigned 32, we know that for any predicate of the

form BitSize Unsigned τ to hold, type τ must be 32. Applying this observation

to the given entailment, we can generate the improving substitution [32/m], and

can conclude that the predicate BitSize Unsigned m can be discharged under this

156

improving substitution.

The situation can be more complex when multiple predicate are involved. For

example, consider the following pair of classes and set of instance declarations:

class C t u v | t → u

class D u v | u → v

instance C Int Float Bool

instance C Int Float Char

instance D Float Bool

Note that, in a predicate with class C, the first parameter determines the second,

but not the third. Thus, knowing the first parameter can be sufficient to compute

an improving substitution for the second, but cannot be enough to discharge the

predicate. As an example, consider the following entailment:

∅ {C Int u v ,D u v}.

As in the prior example, neither of these predicates can be discharged; however, as

there are functional dependencies on classes C and D, we can search for improving

substitutions. The functional dependency on class C allows us to conclude that

the predicate C Int v v can only hold under the substitution [Float/u]; note that

this is not, by itself, enough to discharge the predicate, as we do not know the

instantiation of v . However, by applying this improving substitution to the sec-

ond predicate, we obtain the predicate D Float v ; from the functional dependency

on class D, we can conclude that this predicate only holds under the substitution

[Bool/v]. At this point, we do have enough information to discharge the D pred-

icate. Finally, we can apply the latter substitution to the C predicate, obtaining

C Int Float Bool, which can be discharged.

The previous example demonstrated a case where we can compute improv-

ing substitutions from predicates even without necessarily being able to discharge

157

those predicates. On the other hand, the interaction between instance chains and

functional dependencies can lead to cases in which such improving substitutions

cannot be computed before the predicates are discharged. For example, assume

there is some class C, type constants True and False, and the following definition

of a class XC, representing the characteristic function of class C:

class XC t b | t → b

instance XC t True if C t

else XC t False

The instance of class XC does not violate its functional dependency: for any given

type τ , we can prove at most one of C τ and C τ fails, so either XC τ True or

XC τ False may hold, but both cannot. However, given an entailment ∅ XC τ b,

we cannot conclude any improving substitution for b until we have determined

whether C τ can be proven or disproven.

We can give an intuitive description of the improvement rules for a context P

as follows:

1. For each pair of predicates C ~τ and C ~υ in P , and each functional dependency

(Y Z) ∈ fd(C), such that ~τ |Y = ~υ|Y , if there is some most general unifier

U such that U ~τ |Z = U ~υ|Z , then U is an improving substitution for P . If

there is not such a U , then P is unsatisfiable.

2. For each predicate C ~τ ∈ P , and each functional dependency (Y Z) ∈

fd(C), suppose there is some axiom α = ξ1; ξ2; . . . and index i such that the

following conditions hold.

� For each clause ξj = (dj : ∀~tj . C ~τj ⇐ Pj) with j < i , either there is no

substitution S ∈ Subst(~tj) such that S ~τj |Y = ~τ |Y , or if there is such an

S , then some predicate in S Pj is inconsistent with the axioms or with

the predicates in P .

158

� In clause ξi = (di : ∀~ti . C ~τi ⇐ Pi), there is some S ∈ Subst(~ti) such

that S ~τi |Y = ~τ |Y , and each predicate in S Pi can be proven from the

axioms and the assumptions in P .

In this case, if there is a most general unifier U such that U (S ~τi |Z) = U ~τ |Z ,

then U is an improving substitution for P ; otherwise, P is unsatisfiable.

We define the improving substitutions induced from context P , written impr(P),

as the substitutions such that:

� The identity substitution is in impr(P); and,

� For an substitution S ∈ impr(P), if S ′ arises from S P by one of the im-

provement rules, then S ′ ◦ S ∈ impr(P).

To formally characterize the soundness of induced improving substitutions, we

begin by introducing a notion of the ground instances of a set of predicates, par-

allel to the notion of the ground instances of a qualified type used in the prior

chapter (§5.3.2). Given some basis A | X , we define:

bPc = {S P | A | X ` ∅ S P}.

We can now state that induced improvements neither strengthen nor weaken pred-

icate sets:

Theorem 6.3. For any valid program A | X and context P, if S ∈ impr(P ,A | X),

then bPc = bS Pc.

From the definition of impr(P), we have that, if S ∈ impr(P), then S = Sn ◦

Sn−1 ◦ · · · ◦ S1, where each Si ∈ impr(P) and each Si arises from the improvement

rules applied to Si−1 P . The proof is by induction on the sequence Si ; each step

is immediate from the improvement rules and the forcing relation for functional

dependencies (§4.3.3).

159

6.4 IMPLEMENTATION MECHANISMS

In this section, we give a brief overview of our implementation of the Habit predi-

cate solver. Our model of the Habit predicate system relied on our notions of proof

and refutation being intuitionistic, and our description of the proof rules is quite

similar to resolution or tableaux methods of proof. It may thus be surprising that

we have not relied on an existing first-order prover. Our particular implementa-

tion was developed during our experimentation and research on instance chains.

Nevertheless, we believe that the continued use and development of a specialized

prover is justified by the challenges inherent in translating instance chains and

predicate entailments to first-order formulae and translating the resulting proofs

to class method implementations. In particular:

� The translation of instance chains into first-order formulae is not trivial. For

example, for the following instance chain:

instance C (Maybe t) if D t

else C t if E t

we could construct an equivalent first-order formula, such as:

∀t .((∃u.(t = Maybe u ∧ D u) =⇒ C t) ∧

(∀u.(t 6= Maybe u ∨ ¬D u) ∧ E t =⇒ C t)).

We make several observations about this translation process. First, the im-

plementation of the translation itself could have bugs; thus, assurance about

the underlying solver would not transfer immediately to assurance about the

Habit implementation. Second, we anticipate some need to adapt the trans-

lation to any specific prover; for example, the particular translation given

here obscures the connection between the hypotheses of the first and second

implications, and encodes (decidable) unification and matching in terms of

160

existential quantification and equality, which require an underlying logic that

is not (in general) decidable.

� Even given a successful and efficient translation of instance chains and pred-

icate entailments into an underlying logic, there would still be potentially

significant effort in translating the resulting proofs into suitable implemen-

tations of class methods. As described earlier in this chapter (§6.1), the

particular structure of the proof rules that we have given is closely tied to

our implementation of ad-hoc polymorphism. On the other hand, given a

proof of C τ from the translation above, we would have to determine which

clause was used to prove the predicate, and extract the semantically signifi-

cant portions of its subproofs. This would introduce further complexity and

further reduce the assurance derived from the correctness of the underlying

prover.

� Finally, while we believe that, modulo the concerns above, predicate entail-

ment and program acceptability could be encoded in a suitable first-order

logic, simplification and improvement are less obviously equivalent to typical

first-order solving. While we could potentially forego simplification, improve-

ment plays a central role in the Habit type system.

Given these factors, we have continued our development of a specialized Habit

predicate solver. However, this has introduced some challenges of its own. We

have been able to draw on well-known proof procedures for those parts of the

solver not specific to instance chains; however, this does not exclude the possibil-

ity of implementation errors. More significantly, our implementation has neither

been formally verified, nor (yet) subjected to significant testing, and thus lacks

guarantees of its soundness or correctness. We believe that formal specification

of our present implementation and continued exploration of the use of external

provers are both valuable directions for future work.

161

The remainder of this section gives a brief overview of the structures and logic

of the Habit predicate solver, and discuss some concerns that arose during its

implementation. Our implementation effort has been more concerned with the

correctness of the solver than its speed; thus, some of our implementation choices

preserve the intuition of the solver at the cost of some perhaps-unnecessary effort.

Intuitively, the solver behaves as a function that, given a basis A | X and an

entailment P Q , returns either

� A simplification of Q , empty in the case that Q is completely proven, along

with an improving substitution; or,

� A proof that Q is unsatisfiable.

The latter case arises if the solver can prove some predicate π such that, for some

π′ ∈ Q , A | X ` π 	 π′. However, there may be semantically unsatisfiable

predicates for which no such conflicting predicate is provable; in these cases, while

the solver will not discharge the predicates, it will also not be able to disprove

them.

The solver’s operation is defined primarily in terms of two primary data struc-

ture: the forest, which tracks the proofs the solver is attempting to build; and,

the trail, which tracks the assumptions the solver has made. The solver’s imple-

mentation is structured as a collection of local transformations of the forest and

trail. We begin our explanation of the solver’s mechanism with a worked exam-

ple (§6.4.1), demonstrating the evolution of the forest and trail over the course

of a simple proof. We then describe the data structures that represent the for-

est and trail (§6.4.2), the structure of the local transformations (§6.4.3), and the

domain-specific transformations that implement the solver’s proof search (§6.4.4).

We conclude with some notes on the concrete implementation (§6.4.5).

As the solver is implemented in Haskell, the latter portions of this section may

require more familiarity with Haskell idioms than has been required to this point.

162

class C t

class XC t b | t → b

class D t u | t → u

instance XC t True if C t

else XC t False

instance D Int Bool

Figure 6.1: Example program definitions

6.4.1 The Solver by Example

We begin with a simple example of the solver’s operation; while contrived, it

suffices to demonstrate many of the solver’s transformations. We assume the simple

collection of definitions, shown in Figure 6.1. These include an arbitrary class C, a

class XC implementing the characteristic function of class C, and some type function

D. We shall demonstrate the process the solver follows, given the entailment

C Bool fails XC x y,D Int x,

to conclude that the substitution [Bool/x,False/y] improves the given predicates,

and that the entailment holds under that assumption.

The solver’s initial state is shown in Figure 6.2a. The forest is represented

in the left portion of the diagram—in this case, it contains only the two starting

goals. The trail is represented in the right portion of the diagram—in this case,

it contains only the initial assumption. The solver begins by exploring the goal

XC x y—we show the state after it has done so in Figure 6.2b. The axiom for

class XC applies to the goal, modulo the functional dependency on class XC. The

solver therefore expands the goal node with the two alternatives provided by that

163

Goal: XC x y Goal: D Int x
C Bool fails

(a) The initial solver state

Goal: XC x y

Alternatives

Clause: XC x False⇐ ()Clause: XC x True ⇐ C x

Goal: C x

Goal: D Int x
C Bool fails

XC x y

C x

(b) Solver state after exploring the first goal

Figure 6.2: Example solver execution (part 1)

axiom, and begins to explore the first alternative. The dashed line to the second

alternative represents that the solver is not considering that alternative yet. The

first alternative in turn depends upon the goal C x; at this point in the process, the

solver has no information to prove or disprove that goal, and there are no axioms

for class C. As the solver encounters goals in the forest, it assumes that they hold;

this is to allow for the possibility of improvements arising from the goals (§6.3);

thus, both predicates XC x y and C x appear in the trail.

As the solver can make no further progress on the first goal, it moves to the

second; we show the solver state after exploring the second goal in Figure 6.3a. The

solver has introduced a new root node indicating that it was able to make no further

progress on the first goal; this node captures the number of assumptions available

when the solver failed to make progress. The axiom for D Int Bool applies to the

goal D Int x modulo the functional dependency on class D; thus, the solver can

expand the goal node by that axiom, and begin to explore the first (and only)

alternative it provides. As that clause has no hypotheses, the solver can then

164

commit to the improvement the clause introduced (that of Bool for x). Note that

at this point, the solver has reached an inconsistent state: the assumption that C x

held, arising from the use of the first alternative to prove XC x y, conflicts with the

provided assumption of C Bool fails. The solver will discover this inconsistency

and backtrack when it re-examines the C x goal.

Having proved the D Int x goal (under the current improvement), the solver

collapses the tree to a proof and returns to the first goal. The stuck node indicates

that there were three assumptions available when the solver was unable to make

progress; as there are now more assumptions available, the solver removes the stuck

node and attempts to explore the remaining goal, C x. Under the assumption

x 7→ Bool, this goal is equivalent to C Bool; however, we have the assumption

that C Bool fails. Therefore, the solver attempts to backtrack, invalidating

any assumptions based on the skipped alternative. In this case, there is another

alternative available, so the solver marks the first alternative as skipped and moves

to the second. The second can be trivially discharged, and so the proof can be

completed. Figure 6.3b shows the solver state just before completion.

This example has simplified our current implementation in two ways. First, our

implementation of backtracking is coarser than in this example: upon discovering

that the goal C x was unsatisfiable, the solver would revert to the state immedi-

ately before the first alternative was explored, also reverting any progress on the

D Int x goal. However, from that point the exploration of the second goal would

proceed exactly as described above. We believe that refining our implementation

of backtracking is important future work. Second, our implementation relies on a

breadth-first search of the proof space, instead of the depth-first presentation here.

In this example, this would not result in any difference in the steps the solver takes,

but simply take them in a less immediately intuitive order.

165

Stuck at 3

Goal: XC x y

Alternatives

Clause: XC x False⇐ ()Clause: XC x True ⇐ C x

Goal: C x

Goal: D Int x

Alternatives

Clause: D Int Bool⇐ ()

C Bool fails

XC Bool y

C Bool

D Int Bool

x 7→ Bool

(a) Solver state after exploring the second goal

Goal: XC Bool y

Alternatives

Clause: XC Bool False⇐ ()Clause: XC Bool True ⇐ C Bool

Goal: C Bool

Complete: D Int Bool
C Bool fails

XC Bool False

D Int Bool

x 7→ Bool

y 7→ False

(b) Solver state before completion

Figure 6.3: Example solver execution (part 2)

6.4.2 Forest and Trail

The previous section relied on intuitive notions of the solver’s primary data struc-

tures. In this section, we will discuss the Haskell implementations of those struc-

tures; this will provide a foundation for the discussion of the solver algorithms in

the following sections.

We define the forest through two mutually-recursive data types, Node and Tree.

The Node type captures the structure of proofs themselves, (mostly) avoiding de-

tails of the solver’s implementation. We give a simplified definition of the Node

type in Figure 6.4, and discuss each of its constructors.

166

data Node = Goal { goal :: Pred

, solution :: Maybe Tree }

| Alternatives

{ skipped :: [Tree]

, current :: Tree

, remaining :: [Tree] }

| Clause { spin :: Spin

, axiomName :: AxId

, improvement :: Subst

, subtrees :: Either [Pred] [Tree] }

| Complete { spin :: Spin

, proof :: Proof }

| Stuck { subtree :: Tree }

Figure 6.4: The Node datatype

� The Goal constructor captures solver goals; for example, given a query P

Q , the initial forest would consist of a Goal node for each predicate in Q . The

proof of a goal is constructed in the solution field of its Goal node; initially,

this field is Nothing, but it is replaced when the solver begins exploring the

goal.

� The Alternatives constructor captures an ordered collection of ways to

prove a goal, corresponding to an instance chain. The skipped field contains

those alternatives already shown to be inapplicable, the current field con-

tains the alternative being explored, and the remaining field contains further

possibilities should the current alternative be inapplicable. The solver op-

erates only on the current alternative; the remaining alternatives are not

explored concurrently, and do not contribute to the trail, and any assump-

tions introduced by trees in the skipped alternatives are removed when the

167

alternative is moved to the skipped list.

� The Clause constructor corresponds to a single clause within an instance

chain. The spin field, which can be Proving or Disproving, captures whether

the clause conclusions matched or conflicted with the goal. It may seem odd

to include Disproving clauses at all. However, this allows us to provide use-

ful programmer feedback—identifying inconsistent predicate sets instead of

allowing type inference to generalize over them—while reducing duplicated

solving effort. The improvement field contains any improving substitution

that would be valid were the clause proved, but not before; the instance for

the XC class (§6.3) would induce such an improvement for a predicate XC τ b,

as the improvement for b can only be determined after proving (or disprov-

ing) C τ . Finally, the subtrees field holds the hypotheses of the clause.

Note that Clause nodes may be constructed before they are explored—for

example, if they are in the remaining field of an Alternatives node. When

a Clause node is explored (that is, becomes the current alternative), the

predicates in subtrees are converted to Goal nodes.

� The Complete constructor captures a finished proof; the spin argument is as

in the Clause constructor, and the proof field captures the structure of the

proof tree without the solver’s internal metadata.

� The Stuck node captures a point where the solver could neither prove nor

disprove some goal. (Our earlier example included the number of assumptions

in the node; in fact, this is stored in the metadata common to all nodes,

described below.) The solver may be able to make further progress, however,

given additional predicate assumptions or refinement of type variables.

The Tree type combines a node with a collection of solver metadata; we provide

a simplified definition in Figure 6.5. The metadata for a given node includes:

168

data Metadata = Meta { lastUpdated :: Int

, introduces :: [Int]

, saved :: Maybe SolverState }

data Tree = Tree { nodeFrom :: Node

, metaFrom :: Metadata }

Figure 6.5: The Tree and Metadata datatypes

data Cursor = Cursor Path Tree

data Path = Forest [Tree] [Tree]

| NodeP Node [Tree] Path [Tree] Metadata

Figure 6.6: The Path zipper data type

� A timestamp, lastUpdated, capturing the number of assumptions in the trail

when this node, or its children, were last updated.

� The set of trail assumptions introduced based on this node. Because the

solver may consider an individual node multiple times, it is important to

avoid basing its eventual proof on the (circular) assumption that it holds.

� A saved copy of the solver state (consisting of the trail and forest, and dis-

cussed further below), for backtracking purposes.

Conceptually, the forest is a set of Tree values. However, as the solver is

specified by local solver rewrites, it represents the forest by an encoding of a

particular location in the forest, not just by the forest itself. We use Huet’s zipper

data structure [23] to encode paths in the forest, as shown in Figure 6.6. A Cursor

contains the path to the current subtree (in its first argument) and the current

subtree itself (in its second argument). Unlike Huet’s path datatype, we do not

169

data Trail = Trail { substitution :: Subst

, assumptions :: [(Int, Pred)]

, ignored :: [Int]

, now :: Int }

Figure 6.7: The Trail datatype

create a separate constructor for each constructor in the node type; instead, we

define two functions, children and withChildren, with the following types:

children :: Node → [Node]

withChildren :: Node → [Node] → Node

These functions are responsible for extracting the children of a node, and for re-

constructing a node with new children, respectively. Their implementations are

straightforward, based on the structure of nodes, and their use simplifies the def-

inition of many of our cursor manipulation operations. For example, the code to

move the cursor up in the tree is:

upwards (Cursor (NodeP n left up right meta) here) =

Cursor up (Tree (withChildren n

(reverse left ++ here : right))

meta)

This definition works regardless of the constructor used to build node n. This

also simplifies the extension of the Node datatype—as long as appropriate cases

are added to the children and withChildren functions, the zipper types and

operations remain unchanged.

The second component of the solver’s state is the trail, which captures the as-

sumptions made during the proof. A simplified definition is given in Figure 6.7.

We distinguish two forms of assumptions: assumed predicates, stored in field

170

data SolverState = St { here :: Cursor

, trail :: Trail }

Figure 6.8: The SolverState datatype

assumptions, and type equalities, stored in field substitution. Each assump-

tion, whether a predicate or type equality, is associated with an index, as if they

were included in a uniform sequence. These indices identify the assumptions in-

troduced by a given node (in the solver metadata, discussed above). They are also

used to identify assumptions whose use would introduce circularity (as they were

assumed as a result of the goals the solver is currently trying to prove); this list of

assumptions is stored in the ignored field in the trail. The now field contains the

current time—that is, the number of assumptions in the (uniform representation

of the) trail.

Finally, the SolverState datatype (Figure 6.8) pairs a position in the forest,

represented by a Cursor, with the current trail.

6.4.3 Generic Tactics

We structure the Habit predicate solver as a series of local transformations to the

SolverState. These range from simple and generic, such as moving the cursor, to

complex and domain-specific, such as applying the available axioms to the current

goal. We also define a set of combinators for sequencing, repeating, or choosing

among transformations. Collectively, we refer to these transformers as “tactics,”

as they are the individual components of our general solving strategy, and play

a similar, if simplified, role to the tactics in theorem proving tools. This section

gives an overview of the structure of tactics, and describes their combinators; the

next section provides intuitive descriptions of the more complex, domain-specific

tactics.

171

data Tactic t = Tactic { runTactic :: SolverState →

(TacticResult t, SolverState) }

data TacticResult t = Progress t

| NoProgress

| Exit Reason

data Reason = Done | CantProgress | Failed

Figure 6.9: Tactics and associated types

instance Monad Tactic

where return r = Tactic (λst → (Progress r, st))

t >>= f = Tactic g

where g st = case runTactic t st of

(Progress r, st') → runTactic (f r) st'

(NoProgress, _) → (NoProgress, st)

(Exit r, st') → (Exit r, st')

Figure 6.10: Monad instance for the Tactic type constructor

Figure 6.9 gives the type of tactics. Each tactic, given the current solver state,

generates both a TacticResult t and a new solver state. The tactic result indi-

cates whether the tactic was applicable to its input state. A result of Progress

indicates that the tactic was able to run, and contains an additional return value

of type t. A result of NoProgress indicates that the tactic did not apply to its

input state. The Exit result is used to terminate the solver; this can be either

because the goals are proven (constructor Done), because the solver can make no

further progress (constructor CantProgress), or because one of the goals has been

disproved (constructor Failed).

Tactics form a monad, similar to the composition of state and error monads [30].

172

orElse :: Tactic a → Tactic a → Tactic a

orElse t0 t1 = Tactic f

where f st = case runTactic t0 st of

(NoProgress, _) → runTactic t1 st

r → r

try :: Tactic () → Tactic ()

try t = t `orElse` return ()

whileProgressing :: Tactic () → Tactic ()

whileProgressing t = try (t >> whileProgressing t)

Figure 6.11: Tactic combinators

The first tactic combinator, sequencing, is provided by the bind (>>=) method of

the Monad instance for tactics, given in Figure 6.10. Note that, while a NoProgress

result resets to the initial state, an Exit result does not. Thus, Exit does not

behave quite like an error in the Error monad.

We define several other tactic combinators for handling progress, some of which

are shown in Figure 6.11. The most basic is the orElse combinator: the tactic

t0 `orElse` t1 is equivalent to tactic t0 if t0 makes progress, or to t1 otherwise.

We define two additional tactics using orElse: the tactic try t always makes

progress, even if t does not, while the tactic whileProgressing t repeats t until

it stops making progress. (The definition of whileProgressing uses the combinator

>>, defined by m >> n = m >> λ_ → n.)

6.4.4 Domain-Specific Tactics

We also define a number of domain-specific tactics, each implementing particular

parts of the solving process. As they are more involved, we will give intuitive

173

descriptions here instead of reproducing their code directly.

� The applyTrail tactic updates the current goal with the assumptions in the

trail, discharging the goal if it has already been assumed, and applying any

improving substitution.

� The assume tactic adds a new assumption, and its logical consequences, to

the trail. We derive the consequences of an assumption from three sources,

handled by the three tactics improvePairwise, improveFromAxioms, and

applyRequirements.

� The improvePairwise tactic compares a new assumption to the other as-

sumed predicates, searching for any improving substitutions; this corresponds

to the first of the improvement rules gives earlier (§6.3).

� The improveFromAxioms tactic compares a new assumptions to the axioms,

searching for any improvement that can be justified from the axioms and the

known assumptions; this corresponds to the second of the improvement rules.

Note that this will not compute improvements that depend on discharging

axiom hypotheses; those are introduced only once the relevant hypotheses

are proven. This corresponds to the second of the improvement rules given

earlier.

� The applyRequirements tactic determines whether the new assumption is

the hypothesis of any superclasses, and, if it is, adds the conclusions of those

superclasses to the trail as well. This corresponds to use of the Super rule

of entailment (§4.5).

� The applyAxiom tactic attempts to apply the given axiom to the current

goal node (and makes no progress if the current node is not a goal). Should

an axiom apply, the tactic constructs a subtree containing an Alternatives

node with one Clause child for each applicable clause in the axiom.

174

Additionally, we define several further domain-specific tactics encapsulating proof

state manipulations.

� The expand tactic attempts to make progress at the current point in the tree.

This tactic is unable to progress when applied to Complete nodes; for Clause

and Alternative nodes, it moves to the first child node and invokes itself

recursively. For Stuck nodes, if the node’s lastUpdated metadata is before

the current time, it replaces the node with its (now un-stuck) subtree and

attempts to expand that subtree; otherwise, the tactic is makes no progress.

Finally, for Goal nodes, it begins by attempting to apply the trail to the goal.

If that does not discharge the goal, it introduces any assumptions from the

current goal, and attempt to apply the axioms. If any axioms apply, it has

made progress; otherwise it replaces the goal with a stuck node.

� The collapse tactic attempts to collapse subtrees of the current node. In

many cases, this is straightforward—for example, if the subtree of a Goal

node is complete, then the goal is complete as well; or, if one of the subtrees

of a node is stuck, then the node itself is also stuck. The Alternative case

is more complicated. If the current subtree is complete, proving the goal,

then the Alternative node is complete as well. On the other hand, if the

current subtree was not applicable to the goal (that is, the current subtree

is a Clause node and one of its hypotheses has been disproven), then the

proof search must move on to the next clause in the remaining list, while

backtracking any assumptions that resulted from the unsuccessful current

proof attempt. This is implemented by restoring to the solver state that

was saved before the current clause was explored, and then replacing the

Alternatives node, adding the failed attempt to the skipped list and moving

the head of the remaining list to the current subtree. If the remaining list

is empty, the current branch is stuck.

175

� The advance tactic attempts to move to the next point in the forest that can

be explored. If the current node has right siblings, it moves to the first such

sibling. Otherwise, it attempts to move up the tree, collapsing nodes as it

goes, until it finds a node that has a right sibling. If there is no such node

(that is, the cursor is at the right edge of the forest), the tactic resets to the

left-most explorable node in the forest, exiting if there is no such node.

Finally, we can define the overall search strategy of the solver. Simple traversals

are quite easy to define. For example, a depth-first traversal can be defined by

whileProgressing (whileProgressing expand >> advance)

which expands the current node as far as possible before moving to the next node

in the tree. Alternatively, a breadth-first traversal can be defined by

whileProgressing (try expand >> advance)

Either approach will terminate as long as there is no infinite proof, as there

will eventually be no node that can be expanded, and so advance will not make

progress. However, as rule Step-Contra requires that only one hypothesis be

contradicted, there may be finite proofs that a depth-first approach does not find.

The breadth-first approach is guaranteed to find the contradiction in such cases,

and so we take this approach in our implementation.

6.4.5 Notes on the Implementation

This section has given an overview of the solver, and shown some of the data

structures and algorithms that make up its implementation. We have omitted

much discussion of the syntax of predicates and axioms and the details of unifica-

tion, as these notions are standard. We have also avoided going into detail about

the implementation of instance validation, as it closely follows our earlier formal

description (§4.4).

176

Function Lines of code

Syntax and substitutions 423

Solver implementation 867

Instance validation 321

REPL 443

Total 2054

Figure 6.12: Code size of solver implementation

In addition to these functions, our implementation of the solver also provides

a simple interpreter (or REPL) for specifying class definitions and proving entail-

ments. We use this environment both for prototyping new solver features and for

testing changes to the solver code.

Figure 6.12 gives aggregate lines of code for various solver functions—syntax,

the solver implementation itself, instance validation, and the REPL. We also main-

tain a small, but growing, array of tests, including all of the examples in this

dissertation.

6.5 RELATED WORK

There is much work on translation-based approaches to overloading, which we

have summarized in the prior chapter (§5.5). Our approach to superclasses, how-

ever, differs from much of the previous work in this area. Wadler and Blott [70]

introduce superclasses as an abbreviation—for example, they suggest that the con-

straint Ord t might abbreviate the context Ord t, Eq t. Their translation does

not account for superclasses; although we can surmise that, in their scheme, any

use of a subclass will also include dictionaries for each of its superclasses, whether

or not they are necessary. Jones [28] describes including (references to) superclass

dictionaries within each of their subclasses; this is the approach taken by most

177

Haskell compilers. Our technique could describe his approach, but is more flexi-

ble. For example, the Habit specializer does not combine subclass and superclass

evidence directly, but looks up superclass evidence as needed. We will discuss the

advantages to the Habit approach further in the next chapter, when we discuss

our generalization of superclasses (§7.2).

Our notion of simplification is similar to the Haskell notion of context reduc-

tion, extended to take account of the new features of the Habit class system, and

similar systems are implemented by existing Haskell compilers. In their discussion

of overlapping instances in Haskell [50], Peyton Jones et al. describe the conflict

between overlapping instances and context reduction as specified in the Haskell

report. Similar concerns motivated the definition of our simplification rules (§6.2),

as multiple clauses in a given instance chain may be used to discharge a particular

predicate. Jones characterizes the interaction of simplification and type infer-

ence [31], giving a rule that allows type inference to replace contexts with equally

strong contexts; Theorem 6.2 allows the use of our simplification rules to compute

such equally strong contexts.

Jones proposed improvement as a generalization of the use of the satisfiability

of predicate sets to improve the accuracy of inferred principal types [31], and gives

a rule allowing the application of improving substitutions during type inference.

He later proposed that functional dependencies could provide a general way to

compute improvements from type class predicates; our improvement rules (§6.3)

are similar to his, but extended to take account of instance chains. Theorem 6.3

shows that substitutions computed using our rules meet Jones’s definition of im-

proving substitutions. Sulzmann et al. [63] give an alternative approach to the use

of functional dependencies in type inference, based on a translation to constraint

handling rules. As we have previous argued (§4.6), however, their translation lim-

its the instances that can populate classes with functional dependencies beyond

the requirements of the dependencies themselves.

178

Automated deduction for intuitionistic logics is a well-studied area, and our

proof search follows standard approaches, adapted to the particular interpretation

of instance chains. We found Fitting’s textbook [10] and Waller and Wallen’s sum-

mary of tableaux for intuitionistic logics [67] particularly helpful in understanding

the domain and the particulars of our solver.

179

7. FUTURE WORK

Over the course of this dissertation we have described instance chains, a new

feature to support type-class programming in languages like Haskell and Habit. In

particular:

� We have presented a varied collection of examples, demonstrating both the

difficulties encountered in Haskell type-class programming, and the expres-

siveness of instance chains.

� We have developed a formal semantics of type classes and their predicates.

We have built sound and computable acceptability and entailment judg-

ments, describing whether sets of class and instance declarations have mod-

els, and which predicates are proved from those declarations if they can be

modelled.

� We have extended Ohori’s semantics of Core ML to provide a semantics for

overloaded expressions, and have proved the OML type system, instantiated

with our entailment relation, is a sound approximation of that semantics.

� We have described the implementation of instance chains in the context a

prototype compiler for Habit.

In this chapter, we conclude by describing several areas of further exploration that

we have identified during our development of instance chains:

� Refinements to our notion of validation, allowing more programs without

compromising the consistency or coherence of the class system (§7.1);

180

� A generalization of superclasses, that allows programmers to better define

and enforce the intended semantics of classes (§7.2);

� An extension of our semantics, providing further tools to reason about the

meaning of programs with overloading (§7.3); and,

� Some non-parametric proof techniques, extending the expressiveness of the

predicate language (§7.4).

7.1 REFINING ACCEPTABILITY

We have described a syntactic notion of acceptability, and shown that it is suffi-

cient to guarantee that programs have models (§4.4). As we intend the acceptabil-

ity check to be decidable, it must be a conservative approximation of the semantic

definitions of consistency and coherence. We believe that there are, however, sev-

eral ways in which our definition could be relaxed without compromising the model

existence proof (Theorem 4.1).

� Our definition of acceptability treats clauses in instance chains indepen-

dently; that is, we do not draw on the fact that, for a given clause to apply to

a predicate, the clauses before it must be inapplicable to that predicate. A

more precise approach would be to take the preceding clauses into account,

but doing so raises several challenges. The first challenge is to develop a

method to represent negative syntactic constraints on types. For example,

in the following instance chain

instance C (Maybe t)

else C t

the second clause can only apply to types that are not of the form Maybe τ

for some type τ . To pursue this approach, we would need to develop repre-

sentations and proof rules for such limitations on the instantiation of type

181

variables. The second challenge is to find a mechanism to support true dis-

junctions in clause contexts. For example, in the following instance chain

instance C t if D t, E t

else C t if F t

the second clause can apply only if the first clause does not—that is, we can

think of the second clause as an (independent) axiom of the form

∀t .C t ⇐ (F t ∧ (C t fails ∨D t fails)),

where we use a disjunction to capture the two ways that the first clause could

be skipped. Such disjunctions do not occur normally in predicate contexts, as

giving the solver a free choice of which disjunct to prove could compromise

coherence. This example does not give rise to such a concern, however,

because the evidence for failing predicates is uniform. A treatment of the

second clause that takes the first into account would require some approach

to disjunction, either through extension of the solver, or by enumeration of

each disjunct individually. The first approach would require more changes to

our existing formalization and implementation, but might lead to interesting

additional results; the second would be simpler, but might not scale well to

larger examples.

� Our definition of acceptability also requires that clauses in distinct chains

neither syntactically unify nor conflict. We could relax this constraint by

taking the contexts of clauses into account. For example, given the two

separate one-clause chains:

instance D t if C t

instance D t if C t fails

our current criteria would reject these instances, because their conclusions

unify. However, there is no possibility of incoherence resulting from these

182

instances, as we can have no type t such that both C t and C t fails are

provable. We have identified two consequences of attempting to take contexts

into account in checking overlap and conflict among instances. First, we must

adapt our proofs, and our notion of simplification, to reflect that different

instance chains may syntactically apply to the same predicate. Second, we

must define some notion of when two contexts are provably inconsistent; as

we would intend such a criterion to be well defined and decidable, it must

necessarily be incomplete. There are obvious notions—such as finding a pair

of conflicting predicates. However, this may miss cases that a programmer

would expect to be inconsistent. For example, consider the following trio of

instances:

instance D t fails if C t

instance E t if C t

instance E t if D t

The second and third instances do not introduce incoherence, even though

their contexts, C t and D t do not conflict, as, for any ground instance of

C t, the first instance guarantees that there is a corresponding instance of

D t fails.

� Finally, there may be cases in which the overlap check can be relaxed, as

overlapping proofs would not compromise the coherence of the models. Such

cases include instances asserting negative predicates, as negative predicates

generate no evidence values, and instances for classes with no methods, such

as the Lt or Gcd classes (§3.2.1).

7.2 GENERALIZING SUPERCLASSES

Our presentation of superclasses (§4.3.3) closely mirrors the functionality of Haskell

superclasses. Working on the formalization and implementation of superclasses

183

has suggested a new, more powerful generalization of superclasses, which we call

requirements. While a superclass constraint has the form

∀~t . C ~τ ⇒ D ~υ,

for arbitrary classes C and D , such that the ~υ are type variables, requirements

allow arbitrary contexts in place of the hypothesis C ~τ , and arbitrary conclusions

D ~υ without restriction on ~υ.

We have developed a prototype implementation of requirements, and have be-

gun their formalization. In the remainder of this section, we provide some mo-

tivating examples for requirements, and sketch the extensions to acceptability,

entailment, and the semantics of overloading that are necessary to support them.

Example requirements. We begin with several motivating examples of require-

ments; we have used these examples, among others, to validate our prototype

implementation. All superclasses fit within this more general framework. For ex-

ample, we could express the typical superclass relationship between the Eq and Ord

classes with the following requirement declaration

require Eq t if Ord t

In our prototype implementation, we continue to support the traditional syntax

for superclasses; however, as part of the compilation pipeline, superclasses are

translated into requirements.

We can also use requirements to capture relationships among classes that can-

not be expressed using superclasses. For example, the standard Haskell prelude in-

cludes two classes, Integral and Floating, abstracting integer and floating-point

operations. Intuitively, we would expect these classes to be disjoint; however,

there is no way to capture such a constraint in Haskell. Thus, an expression such

as (λx → sin x `mod` 2) would have the type

(Integral t ,Floating t)⇒ t → t ,

184

where the constraint should be unsatisfiable in practice, but would not trigger a

type error. Using requirements, we could insist that the two classes be disjoint,

with declarations such as

require Floating t fails if Integral t

require Integral t fails if Floating t

Using these declarations, we could conclude that, for any ground instance of

Integral t, there must be a corresponding ground instance of Floating t fails,

and thus that the type of (λx → sin x `mod` 2) is provably unsatisfiable.

We can also use requirements to reason about intersections of classes. For

example, the Habit language uses a predicate of the form NumLit n t to indicate

that a value of type t can represent a numeric literal with value n, and a type

function NonZero to statically eliminate the possibility of division by zero. We

might like to ensure that, if there is a numeric literal of type t with non-zero value

n, then there is also a literal of type NonZero t with value n. We can do this using

requirements, as follows:

require NumLit n (NonZero t) if NumLit n t, 0 < n

The Habit report proposes an instance of this form; however, this has implementa-

tion difficulties, as it overlaps with all other instances of NumLit, and the NonZero

class does not include a class method for constructing literals.

Finally, requirements allow us to capture properties of individual classes. For

example, given a class Lt, implementing the less-than relationship for type-level

numbers, we could capture that Lt is anti-symmetric, using the requirement

require Lt m n fails if Lt n m

or that it is transitive, using the requirement

require Lt m p if Lt m n, Lt n p

185

These examples demonstrate that requirements are a powerful tool for pro-

grammers to document important semantic properties of, and relationships be-

tween, classes. In the following sections, we will describe how the compiler can

enforce these requirements, and their implications for entailment and the semantics

of overloading.

Modelling and Acceptability. The forcing relation for requirements is a di-

rect generalization of that for superclasses. In the case of superclasses, we had

constraints of the form ∀~t . π′ ⇒ π and the forcing relation

G |= (∀~t . π′ ⇒ π) ⇐⇒ ∀S ∈ GSubst(~t). (G |= S π′ =⇒ G |= S π).

Requirements have a more general structure, ∀~t . P ⇒ π, replacing the single

hypothesis π′ with the hypotheses P , but the extension of the forcing relation is

direct

G |= (∀~t . P ⇒ π) ⇐⇒ ∀S ∈ GSubst(~t). (G |= S P =⇒ G |= S π).

On the other hand, the extension of the acceptability relation to requirements is

not as simple. As with superclasses, we approximate the conditions under which

some π ∈ P is forced by the hypotheses Q of each axiom clause ∀~t . π′ ⇐ Q such

that π′ matches π. However, with requirements, we must consider combinations

of axiom clauses that match the requirement hypotheses, not just single clauses.

For example, consider the constraint

∀m, n, p. (Lt m n,Lt n p)⇒ Lt m p,

corresponding to the transitivity requirement above, along with the instances

instance Lt Z (S n)

instance Lt (S m) (S n) if Lt m n

186

As with superclasses, we will check the axioms against the requirements in se-

quence; in this case, we will start with the axiom for zero, and then the axiom for

successors. Validating the zero axiom against the requirement is straightforward,

as the zero axiom cannot syntactically match both hypotheses. However, in the

case of the successor axiom, there are two possible ways to match the hypotheses

of the requirement. Thus, to show that the new axiom respects the requirement,

we must show the entailments:

Lt m n Lt Z (S n)

Lt m n,Lt n p Lt (S m) (S n)

The first of these is immediate. The second requires an inductive argument. In

particular, we must use the requirement that we are validating to conclude from

Lt m p from the hypotheses. A development of requirements would thus need to

allow this kind of inductive use of requirements without generating specious proofs.

As this example demonstrates, the number of entailments needed to validate

a requirement can grow polynomially. We believe, however, that the required

effort will be limited in practice. First, we imagine many requirements will arise

from Haskell-style superclasses; in this case, validating the requirement involves

no more work than would validating a superclass in Haskell. For the remaining

cases, we make the observation that most classes are either populated by a large

number of specific instances, or by a small number of generic instances. In either

case, the potential effort to validate requirements is limited: in the first case,

because the requirement is validated at specific types, limiting the number of

possible instantiations; and, in the second case, because there are relatively few

total instances to be considered. In the example given above, while there are four

possible combinations of the two axioms for Lt, two can be eliminated syntactically.

Entailment. As with acceptability, extending the entailment rules from super-

class constraints to requirements is initially straightforward, but seems to introduce

187

significant complexity to the proof search. The entailment rule for superclasses is

(∀~t . π′ ⇒ π) ∈ X S ∈ Subst(~t) A | X ` P S π′
[Super]

A | X ` P S π

We could extend this rule to requirements by simply replacing hypothesis π′ with

a set of hypotheses Q :

(∀~t . Q ⇒ π) ∈ X S ∈ Subst(~t) A | X ` P S Q
[Require]

A | X ` P S π

However, it is not clear if there is a complete implementation for such a rule; in

particular, for requirements such as the earlier transitivity example:

∀m, n, p. Lt m n,Lt n p ⇒ Lt m p,

using this rule to prove a predicate Lt τ1 τ2 would seem to require searching for

a suitable instantion of type variable n. To avoid this search, our implementation

uses forward-chaining with requirements, while still using backwards-chaining with

axioms. That is, rather than attempt to match the current goals with the conclu-

sions of requirements, we add the conclusion of a requirement to the assumptions

if all of its hypotheses have already been assumed. While this avoids search, it is

incomplete. For example, consider the program containing an instance

(∀t . D t ⇐ C t) ; ε

and the requirement

∀t . (D t ,E t)⇒ F t .

Given rule Require as above, we could construct a proof of the entailment

C τ,E τ F τ , using rule Require on goal F τ , followed by rule Assume

to discharge the goal E τ and rule Axiom to discharge goal D τ . However, our

implementation does not find this proof, because the predicate D τ is never as-

sumed.

188

Semantics. Dictionary-passing translations of Haskell traditionally implement

superclasses by embedding superclass dictionaries in subclass dictionaries. For ex-

ample, each dictionary for an Ord t constraint would contain the corresponding

Eq t dictionary. This approach does not obviously generalize to handle require-

ments, however. For example, given the example transitivity requirement, it would

seem to require embedding the evidence for Lt m p in either the evidence for Lt m n

or the evidence for Lt n p; however, neither of these embeddings is sensible. We

give a more generic treatment of superclasses in our translation semantics of over-

loading (§6.1). Our approach describes the construction of superclass evidence by

a function on the proof of its hypothesis. This naturally generalizes to require-

ments, as requirement evidence could be given by a function of the proofs of its

hypotheses. In this view, an inductive proof, such as the one for the Lt instances

above, would correspond to a recursion in the requirement’s evidence function, and

the induction being well founded would correspond to the recursion terminating.

7.3 SEMANTICS OF OVERLOADING

Our semantics of overloading serves to relate our models of type classes to the

meanings of overloaded expressions, and to prove that the OML type system, in

combination with our entailment relation, is an accurate approximation of the

dynamic semantics of those expressions. In this section, we discuss two extensions

of our semantics to facilitate its use in reasoning about programs with overloading.

The first is to extend our approach to equational theories of OML expressions,

as in Ohori’s semantics for Core ML. This would simplify reasoning about the

meanings of OML expressions, without having to reason directly about sets of

simply-typed terms; it would also allow us to investigate whether full abstraction,

proved by Ohori for his semantics, could also be proved for ours. We believe that

the most significant technical obstacle to this extension would arise from class

189

methods. Ohori’s approach relies on uniform substitution of polymorphic expres-

sions. However, we cannot, for example, hope to substitute a uniform expression

for the equality predicate, as its meaning differs at different types. Ohori’s de-

velopment also assumes β-equality, which fits languages, like Haskell, that use

call-by-need evaluation models, but would not describe languages, like Habit, that

use call-by-value evaluation.

The second is to investigate parametricity in our semantics. The idea of para-

metricity originated with Reynold’s abstraction theorem [54]; in the functional

programming community, it is most commonly known via Wadler’s development

of “free theorems” [68]. Free theorems refer to semantic properties of expressions

that are derived solely from their types, and from the application of the abstrac-

tion theorem. For example, from the types of reverse and map, Wadler shows

that map f ◦ reverse = reverse ◦ map f, for an arbitrary function f. Again, we

believe that the primary difficulty in adapting Reynolds’s approach to our setting

would be the non-uniformity introduced by classes and their methods.

7.4 PROOF BY CASES

In the previous section, we discussed several challenges introduced by the non-

uniformity of our semantics. This section, by contrast, discusses some ways that

we could rely on that non-uniformity to increase the expressiveness of our predicate

language. As a motivating example, consider the instance

instance C Int

else C t if D t

and the entailment D t C t . It may be surprising that the proof rules we

have given are not sufficient to prove such an entailment from the given instance.

However, note that our rules for entailment require each predicate to be discharged

uniformly. In this case, a proof of C t would depend on the instantiation of t : if

190

class C t

where f :: t → t

instance C Bool

where f = not

else C t

where f = id

g x = f (f x)

Figure 7.1: Non-parametric behavior without qualified type

t is instantiated to Int, then the proof relies on the first clause of the instance

chain; in all other cases, it relies on the second. Similar cases have arisen in

practice; for example, a programmer was surprised to discover that the Habit

compiler was unable to discharge an entailment (n < 32) (m + n = 32) with a

suitable improvement for m. However, as in the previous entailment, the proof of

m + n = 32, and the corresponding improvement for m, differs depending upon

the instantiation of n.

We have begun experimenting with proof techniques that would be able to

discharge such entailments. Our approach is based on observing that, if there is an

axiom that includes a clause matching the goal predicate, then the goal predicate

must be proved by clauses in that axiom. Thus, we can consider each clause that

could provide the goal separately. For example, in the above example, we would

observe that goal C t must be proven either by the clause C Int ⇐ ε or by the

clause ∀t . C t ⇐ D t . Distinct proofs, and distinct entailments, are computed in

each case. Note that we could not apply this technique without the assumption

D t , as we could not prove the second case, nor could we use it to simplify C t to

D t , as we do not know whether or not D Int holds. This approach does not cause

191

problems with our semantics of overloading, as the semantics of a polymorphic

value is defined in terms of its monomorphic specializations, and the proof objects

and improvements are well-defined at each monomorphic type. Similarly, it works

well with Habit’s existing compilation pipeline.

However, this approach introduces challenges with other semantic results. For

example, consider the code in Figure 7.1. Given these declarations, we might

expect the function g to have the type C t ⇒ t → t. However, we could use

a proof by cases to conclude the entailment ∅ C t , and so we could assign g

the unqualified type t → t. This suggests that allowing proof by cases could

introduce further challenges with abstraction and parametricity results, along the

lines described in the previous section.

Analysis by cases could also contribute to the computation of useful improve-

ments from instance chains. For example, consider the instance chain

instance C Int

else C t fails

A case-wise analysis of this instance chain would allow us to conclude that the only

satisfiable instance of a predicate C t is C Int, and thus that [Int/t] is an improving

substitution for such a predicate. Our prototype implementation of proof by cases

does not yet compute such improvements.

192

REFERENCES

[1] Cabal. http://haskell.org/cabal, 2013.

[2] William R. Cook. Object-oriented programming versus abstract data types. In

Proceedings of the REX School/Workshop on Foundations of Object-Oriented

Languages, pages 151–178, London, England, 1991. Springer-Verlag.

[3] Duncan Coutts. Solving the diamond dependency problem. http://blog.

well-typed.com/2008/08/solving-the-diamond-dependency-problem/,

2008. Last accessed June 8, 2010.

[4] Duncan Coutts. Regression testing with hackage. http://blog.well-typed.

com/2009/03/regression-testing-with-hackage/, 2009. Last accessed

June 8, 2010.

[5] Luis Damas and Robin Milner. Principal type schemes for functional pro-

grams. In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, POPL ’82, pages 207–212, Albuquerque,

NM, 1982. ACM.

[6] Dominique Devriese and Frank Piessens. On the bright side of type classes:

instance arguments in Agda. In Proceedings of the 16th ACM SIGPLAN

international conference on Functional programming, ICFP ’11, pages 143–

155, Tokyo, Japan, 2011. ACM.

[7] Iavor S. Diatchki and Mark P. Jones. Strongly typed memory areas: program-

ming systems-level data structures in a functional language. In Proceedings

193

of the 2006 ACM SIGPLAN workshop on Haskell, Haskell ’06, pages 72–83,

Portland, Oregon, USA, 2006. ACM.

[8] Derek Dreyer, Robert Harper, Manuel M. T. Chakravarty, and Gabriele

Keller. Modular type classes. In Proceedings of the 34th annual ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,

POPL ’07, pages 63–70, Nice, France, 2007. ACM.

[9] Melvin Fitting. Model existence theorems for modal and intuitionistic logics.

Journal of Symbolic Logic, 38(4):613–627, Dec 1973.

[10] Melvin Fitting. First-order logic and automated theorem proving (2nd ed.).

Springer-Verlag New York, Secaucus, New Jersey, 1996.

[11] Harvey Friedman. Equality between functionals. In Rohit Parikh, editor,

Logic Colloquium, volume 453 of Lecture Notes in Mathematics, pages 22–37.

Springer Berlin Heidelberg, 1975.

[12] Benedict R. Gaster. Records, variants, and qualified types. PhD thesis, Uni-

versity of Nottingham, 1998.

[13] Benedict R. Gaster and Mark P. Jones. A polymorphic type system for exten-

sible records and variants. Technical Report NOTTCS-TR-96-3, University

of Nottingham, 1996.

[14] GHC. http://haskell.org/ghc, 2013.

[15] Jean-Yves Girard. The system F of variable types, 15 years later. In Gerard

Huet, editor, Logical Foundations of Functional Programming, pages 87–126.

Addison-Wesley, 1990.

[16] Carl A. Gunter. Semantics of Programming Languages. The MIT Press,

Cambridge, Massachusetts, 1992.

194

[17] Thomas Hallgren. Fun with functional dependencies, or (draft) types as values

in static computations in Haskell. http://www.cse.chalmers.se/∼hallgren/

Papers/wm01.html.

[18] William Harrison. A simple semantics for polymorphic recursion. In Proceed-

ings of the 3rd Asian Symposium on Programming Languages and Systems,

APLAS ’05, pages 37–51, Tsukuba, Japan, 2005. Springer-Verlag.

[19] Bastiaan Heeren and Jurriaan Hage. Type class directives. In Seventh In-

ternational Symposium on Practical Aspects of Declarative Languages, PADL

’05, pages 253–267. Springer-Verlag, 2005.

[20] David Himmelstrup, Paolo Martini, Bjorn Bringert, Isaac Potoczny-Jones,

and Duncan Coutts. cabal-install: The command-line interface for cabal and

hackage. http://hackage.haskell.org/package/cabal-install. Last ac-

cessed June 7, 2010.

[21] J. Roger Hindley. The principal type scheme of an object in combinatory

logic. Transactions of the AMS, (146):29–60, 1969.

[22] Ralf Hinze. Generics for the masses. J. Funct. Program., 16(4-5):451–483,

July 2006.

[23] Gérard Huet. The zipper. J. Funct. Program., 7(5):549–554, September 1997.

[24] Hugs 98. http://haskell.org/hugs, 2006.

[25] Mark P. Jones. Coherence for qualified types. Technical Report YALEU/

DCS/RR-989, Yale University, 1993.

[26] Mark P. Jones. Gofer 2.28 release notes. http://web.cecs.pdx.edu/∼mpj/

goferarc/gofer230b.zip/docs/release.228, 1993.

195

[27] Mark P. Jones. A system of constructor classes: overloading and implicit

higher-order polymorphism. In Conference on Functional Programming and

Computer Architecture, FPCA ’93, pages 52–61, Copenhagen, Denmark, 1993.

ACM.

[28] Mark P. Jones. Qualified Types: Theory and Practice. Cambridge University

Press, 1994.

[29] Mark P. Jones. Dictionary-free overloading by partial evaluation. Lisp Symb.

Comput., 8(3):229–248, September 1995.

[30] Mark P. Jones. Functional programming with overloading and higher-order

polymorphism. In First International Spring School on Advanced Functional

Programming Techniques, volume 925 of Lecture Notes in Computer Science,

May 1995.

[31] Mark P. Jones. Simplifying and improving qualified types. In Proceedings

of the seventh international conference on Functional programming languages

and computer architecture, FPCA ’95, pages 160–169, La Jolla, California,

USA, 1995. ACM.

[32] Mark P. Jones. Type classes with functional dependencies. In Proceedings of

the 9th European Symposium on Programming Languages and Systems, ESOP

’00, pages 230–244, Berlin, Germany, 2000. Springer-Verlag.

[33] Mark P. Jones and Iavor S. Diatchki. Language and program design for func-

tional dependencies. In Proceedings of the first ACM SIGPLAN symposium

on Haskell, Haskell ’08, pages 87–98, Victoria, BC, Canada, 2008. ACM.

[34] Oleg Kiselyov and Ralf Lämmel. Haskell’s overlooked object system. Draft;

Submitted for publication; online since 10 Sept. 2005.

196

[35] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heteroge-

neous collections. In Proceedings of the 2004 ACM SIGPLAN workshop on

Haskell, Haskell ’04, pages 96–107, Snowbird, Utah, USA, 2004. ACM Press.

[36] Saul A. Kripke. Semantical analysis of modal logic I. Normal propositional

calculi. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik,

9:67–96, 1963.

[37] Shriram Krishnamurthi, Matthias Felleisen, and Daniel P. Friedman. Synthe-

sizing object-oriented and functional design to promote re-use. In Proceedings

of the 12th European Conference on Object-Oriented Programming, ECCOP

’98, pages 91–113, London, England, 1998. Springer-Verlag.

[38] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular

interpreters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, POPL ’95, pages 333–343, San Fran-

cisco, California, 1995. ACM.

[39] David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for recur-

sive polymorphic types. In Proceedings of the 11th ACM SIGACT-SIGPLAN

symposium on Principles of programming languages, POPL ’84, pages 165–

174, Salt Lake City, Utah, United States, 1984. ACM.

[40] David Maier. The Theory of Relational Databases. Computer Science Press,

1983.

[41] Robin Milner. A theory of type polymorphism in programming. Journal of

Computer and System Sciences, (17):348–375, 1978.

[42] Robin Milner, Mads Tofte, and Robert Harper. The definition of Standard

ML. MIT Press, Cambridge, MA, USA, 1990.

197

[43] J. C. Mitchell and R. Harper. The essence of ML. In Proceedings of the

15th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, POPL ’88, pages 28–46, San Diego, California, United States, 1988.

ACM.

[44] J. Garrett Morris. Experience report: Using Hackage to inform language

design. In Proceedings of the third ACM symposium on Haskell, Haskell ’10,

Baltimore, Maryland, USA, 2010. ACM.

[45] J. Garrett Morris and Mark P. Jones. Instance chains: Type-class program-

ming without overlapping instances. In Proceedings of the 15th ACM SIG-

PLAN international conference on Functional programming, ICFP ’10, Balti-

more, MD, 2010. ACM.

[46] Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and Michael Sper-

ber. A functional notation for functional dependencies. In Proceedings of

The 2001 ACM SIGPLAN Workshop on Haskell, Haskell ’01, Firenze, Italy,

September 2001.

[47] Martin Odersky, Philip Wadler, and Martin Wehr. A second look at over-

loading. In Proceedings of the seventh international conference on Functional

programming languages and computer architecture, FPCA ’95, pages 135–146,

La Jolla, California, USA, 1995. ACM.

[48] Atsushi Ohori. A simple semantics for ML polymorphism. In Proceedings of

the fourth international conference on Functional programming languages and

computer architecture, FPCA ’89, pages 281–292, London, UK, 1989. ACM.

[49] Simon Peyton Jones, editor. Haskell 98 Language and Libraries – The Revised

Report. Cambridge University Press, 2003.

198

[50] Simon Peyton Jones, Mark P. Jones, and Erik Meijer. Type classes: an explo-

ration of the design space. In Proceedings of the 1997 workshop on Haskell,

Haskell ’97, Amsterdam, The Netherlands, 1997.

[51] The Hasp Project. The habit programming language: The revised preliminary

report. http://hasp.cs.pdx.edu/habit-report-Nov2010.pdf, 2010.

[52] John C. Reynolds. Towards a theory of type structure. In Paris Colloquium

on Programming, pages 408–423. Springer-Verlag, 1974.

[53] John C. Reynolds. User-defined types and procedural data structures as

complementary approaches to data abstraction. In New Advances in Al-

gorithmic Languages, pages 157–168. Inst. de Recherche d’Informatique et

d’Automatique, 1975.

[54] John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP

Congress, pages 513–523, 1983.

[55] John A. Robinson. A Machine-Oriented logic based on the resolution principle.

J. ACM, 12(1):23–41, January 1965.

[56] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin Sulz-

mann. Type checking with open type functions. In Proceeding of the 13th

ACM SIGPLAN international conference on Functional programming, IFCP

’08, pages 51–62, Victoria, BC, Canada, 2008. ACM.

[57] Jonathan Shapiro, Swaroop Sridhar, and Scott Doerrie. BitC (0.11 transi-

tional) language specification. http://www.bitc-lang.org/docs/bitc/spec.

html. Last accessed June 15, 2010.

[58] Tim Sheard and Emir Pasalic. Two-level types and parameterized modules.

J. Funct. Program., 14(5):547–587, Sep 2004.

199

[59] Tim Sheard and Emir Pasalic. Meta-programming with built-in type equality.

Electronic Notes in Theoretical Computer Science, 199(0):49–65, 2008.

[60] Dominic Steinitz. Exporting a type class for type signatures. http://

www.haskell.org/pipermail/haskell-cafe/2008-November/050409.html,

November 2008.

[61] Don Stewart. Re: [Haskell-cafe] Overlapping/Incoherent instances. http:

//www.haskell.org/pipermail/haskell-cafe/2008-October/049155.html,

2008. Last accessed June 8, 2010.

[62] Christopher Strachey. Fundamental concepts in programming languages.

Higher-Order and Symbolic Computation, 13(1):11–49, Apr 2000.

[63] Martin Sulzmann, Gregory J. Duck, Simon Peyton Jones, and Peter J.

Stuckey. Understanding functional dependencies via constraint handling rules.

JFP, 17(1):83–129, 2007.

[64] Wouter Swierstra. Data types à la carte. JFP, 18(04):423–436, 2008.

[65] The Cabal Team. #435 (ban upwardly open version ranges in dependencies on

base). http://hackage.haskell.org/trac/hackage/ticket/435, 2009. Last

accessed June 8, 2010.

[66] Roel van Dijk. Ann: Reverse dependencies in hackage (demo). http:

//www.haskell.org/pipermail/haskell/2009-October/021691.html, 2009.

Last accessed June 8, 2010.

[67] Arild Waaler and Lincoln Wallen. Tableaux for intuitionistic logics. In Mar-

cello D’Agostino, Dov M. Gabbay, Reiner H ahnle, and Joachim Posegga, edi-

tors, Handbook of Tableau Methods. Kluwer Academic Publishers, Dordrecht,

The Netherlands, 1999.

200

[68] Philip Wadler. Theorems for free! In Proceedings of the fourth international

conference on Functional programming languages and computer architecture,

FPCA ’89, pages 347–359, London, England, 1989. ACM.

[69] Philip Wadler. The expression problem. http://homepages.inf.ed.ac.uk/

wadler/papers/expression/expression.txt, 1998.

[70] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less

ad hoc. In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, POPL ’89, pages 60–76, Austin, Texas,

USA, 1989. ACM.

[71] Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic

Computation, 8(4):343–355, 1995.

