
B-Trees 2/14/2019 9:02 AM

1

1

B-Trees and External Memory

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

(2, 4) Trees: Generalization of BSTs
• Each internal node has 2 to 4 children:

• The number of data items in each internal
node is one less than the number of its
children.

• Leaves (external nodes) are at the same level
and have 1 to 3 data items.

• Nodes with 3 items are called full nodes.
• Items in each node are in ascending order: S < M < L
• It also maintains the following order:

1

2

B-Trees 2/14/2019 9:02 AM

2

(2, 4) Tree Example

(2, 4) Tree: Insertion
Insertion procedure:

• Items are inserted at the leafs
• Since a full node cannot take new item, full

nodes are split up during insertion process

Strategy
• On the way from the root down to the leaf:

split up all full nodes "on the way"
 insertion can be done in one pass

3

4

B-Trees 2/14/2019 9:02 AM

3

(2, 4) Tree: Insertion
Inserting 60, 30, 10, 20, 50, 40, 70, 80, 15, 90, 100

(2, 4) Tree: Insertion
Inserting 60, 30, 10, 20 ...

... 50, 40 ...

The root is split
and a new root
is created.

5

6

B-Trees 2/14/2019 9:02 AM

4

(2, 4) Tree: Insertion
Inserting 50, 40 ...

... 70, ...

(2, 4) Tree: Insertion
Inserting 70 ...

... 80, 15 ...

7

8

B-Trees 2/14/2019 9:02 AM

5

(2, 4) Tree: Insertion
Inserting 80, 15 ...

... 90 ...

(2, 4) Tree: Insertion
Inserting 90 ...

... 100 ...

9

10

B-Trees 2/14/2019 9:02 AM

6

(2, 4) Tree: Insertion
Inserting 100 ...
The root is split and a new root is created.

(2, 4) Tree: Insertion Procedure

Splitting full nodes during Insertion

11

12

B-Trees 2/14/2019 9:02 AM

7

(2, 4) Tree: Insertion Procedure

Splitting a full node whose parent is a 2-node during insertion

(2, 4) Tree: Insertion Procedure

Splitting a full node whose parent has 2 items

13

14

B-Trees 2/14/2019 9:02 AM

8

15

Analysis of Insertion
Algorithm put(v, o)
1. If v is full, split v up as [L, m, R],

where m is the middle item of v and
L and R are two subtrees. If v is the
root, create a new root containing m,
with L and R as children; otherwise,
send one item and two branches up
to the parent of v

2. If v is a leaf, add item o into the leaf;

3. Else choose the child c of v by

key(v), call put(c, o) recursively.

 Let T be a (2,4) tree
with n items
 Tree T has O(log n)

height
 put(T, o) takes O(log n)

time because we visit
O(log n) nodes

 Steps 1-3 takes O(1)
time at each node.

 Thus, an insertion in a
(2,4) tree takes O(log n)
time

16

(2, 4) Tree： Deletion
 We reduce deletion of an entry to the case where the item is at the

node with leaf children
 Otherwise, we replace the entry with its inorder successor (or,

equivalently, with its inorder predecessor) and delete the latter entry
 Example: to delete key 24, we replace it with 27 (inorder successor)

27 32 35

10 15 24

2 8 12 18

32 35

10 15 27

2 8 12 18

15

16

B-Trees 2/14/2019 9:02 AM

9

17

Underflow and Fusion
 Deleting an entry from a node v may cause an underflow, where

node v becomes a 1-node (i.e., with one child and no keys)
 To handle an underflow at node v with parent u, we consider two

cases:
 Case 1: an adjacent sibling of v has only one item.

 Fusion operation: we merge v with an adjacent sibling w and move
an entry from u to the merged node v'

 After a fusion, the underflow may propagate to the parent u

9 14

2 5 7 10

u

v

9

10 14

u

v'w
2 5 7

Underflow and Transfer
 To handle an underflow at node v with parent u, we consider

two cases:
 Case 1: all adjacent siblings of v have only one item.
 Case 2: an adjacent sibling w of v has more than 1 item.

 Transfer operation: (always keep the search tree property)
1. we move a child branch of w to v
2. we move an item from u to v
3. we move an item from w to u

 After a transfer, no underflow occurs

4 9

6 82

u

vw

4 8

62 9

u

vw

17

18

B-Trees 2/14/2019 9:02 AM

10

19

Underflow and Fusion Example
 To handle an underflow at node v with parent u, we consider

two cases
 Case 1: all adjacent siblings of v have only one item.

 Fusion operation: we merge v with an adjacent sibling w and move
an entry from u to the merged node v'

 After a fusion, the underflow may propagate to the parent u

Remove(9):

4, 8

6 2 9

u

vw

4

2 6,8

u

v’w

Underflow and Transfer Example
 To handle an underflow at node v with parent u, we consider

two cases
 Case 2: an adjacent sibling w of v has more than 1 item

 Transfer operation:
1. we move a child of w to v
2. we move an item from u to v
3. we move an item from w to u

 After a transfer, no underflow occurs

Remove(2):

4

2 6,8

u

v

6

4 8

u

ww

19

20

B-Trees 2/14/2019 9:02 AM

11

Underflow and Transfer Example
 To handle an underflow at node v with parent u, we consider

two cases
 Case 1: the adjacent siblings of v are 2-nodes

 Fusion operation: we merge v with an adjacent sibling w and move
an entry from u to the merged node v'

 After a fusion, the underflow may propagate to the parent u

Remove(4):

6

4 8

u

v
6,8

u

v’w

22

Analysis of Deletion
 Let T be a (2,4) tree with n items

 Tree T has O(log n) height
 In a deletion operation

 We visit O(log n) nodes to locate the node from
which to delete the entry

 We handle an underflow with a series of O(log n)
fusions, followed by at most one transfer

 Each fusion and transfer takes O(1) time
 Thus, deleting an item from a (2,4) tree takes

O(log n) time

21

22

B-Trees 2/14/2019 9:02 AM

12

(2, 4) Tree: Deletion

Deletion procedure:
• Items are deleted at the leafs
 swap item of internal node with inorder successor

• Note: Leaf with one item creates a problem, solved by
fusion and transfer.

Alternative Strategy:
• on the way from the root down to the leaf:

turn nodes with one item (except root) into nodes with
two items

 deletion can be done in one pass

Red-Black Tree vs (2, 4) Tree

• binary-search-tree representation of (2, 4) tree

• full nodes are represented by equivalent binary trees

• Each (2, 4) node generates exactly one black node (on
the top), and zero red node for nodes with one item, one
red for nodes with two items, and two red ones for full
nodes.

23

24

B-Trees 2/14/2019 9:02 AM

13

Red-Black Representation of full node

Red-Black Representation of 3-node

25

26

B-Trees 2/14/2019 9:02 AM

14

Red-Black Tree vs
(2, 4) Tree

Red-Black Tree vs (2, 4) Tree
• Let h be the height of a (2, 4) tree and H be the height of

the corresponding red-black tree.

• h = O(log n).

• h is the number of black nodes from the root to any leaf in
the corresponding red-black tree.

• H <= 2h, because red nodes cannot be more than black
nodes on any path from the root to a leaf.

• Hence H = O(log n).

27

28

B-Trees 2/14/2019 9:02 AM

15

29

Multiway Search Trees
A multiway search tree of order m, or an m-way search

tree, is an m-ary tree in which:
1. Each node has up to m children and m-1 keys
2. The keys in each node are in ascending order
3. The keys in the first i children are smaller than the

ith key
4. The keys in the last m-i children are larger than the

ith key

Multi-Way Search Tree
 A multi-way search tree is an ordered tree such that

 Each internal node has at least two children and stores d 1
key-element items (ki, oi), where d is the number of children

 For a node with children v1 v2 … vd storing keys k1 k2 … kd1

 keys in the subtree of v1 are less than k1

 keys in the subtree of vi are between ki1 and ki (i = 2, …, d  1)
 keys in the subtree of vd are greater than kd1

 The leaves are all at the same level.

11 24

2 6 8 15 27 32

29

30

B-Trees 2/14/2019 9:02 AM

16

31

Multi-Way Inorder Traversal
 We can extend the notion of inorder traversal from binary trees

to multi-way search trees
 Namely, we visit item (ki, oi) of node v between the recursive

traversals of the subtrees of v rooted at children vi and vi  1

 An inorder traversal of a multi-way search tree visits the keys in
increasing order

11 24

2 6 8 15 27 32

1 3 5 7 9 11 13 17

2 4 6 14 16

8 12

10

15

32

Multi-Way Searching
 Similar to search in a binary search tree
 At each internal node with children v1 v2 … vd and keys k1 k2 … kd1

 k  ki (i = 1, …, d  1): the search terminates successfully
 k  k1: we continue the search in child v1

 ki1  k  ki (i = 2, …, d  1): we continue the search in child vi

 k kd1: we continue the search in child vd

 Reaching a leaf node terminates the search unsuccessfully
 Example: search for 30

11 24

2 6 8 15 27 32

31

32

B-Trees 2/14/2019 9:02 AM

17

33

(a,b) Trees
 To reduce the number of external-memory accesses

when searching, we can represent a map using a
multiway search tree.

 This approach gives rise to a generalization of the
(2,4) tree data structure known as the (a,b) tree.

 An (a,b) tree is a multiway search tree such that each
node has between a and b children and stores between
a − 1 and b − 1 entries.

 By setting the parameters a and b appropriately with
respect to the size of disk blocks, we can derive a data
structure that achieves good external-memory
performance.

34

Definition
 An (a,b) tree, where parameters a and b are

integers such that 2 ≤ a ≤ (b+1)/2, is a
multiway search tree T with the following
additional restrictions:

 Size Property: Each internal node has at
least a children, unless it is the root, and has
at most b children.

 Depth Property: All the leaf nodes have the
same depth.

33

34

B-Trees 2/14/2019 9:02 AM

18

35

Height of an (a,b) Tree

36

Searches and Updates
 The search algorithm in an (a,b) tree is exactly like

the one for multiway search trees.
 The insertion algorithm for an (a,b) tree is similar to

that for a (2,4) tree.
 An overflow occurs when an entry is inserted into a b-node w, which

becomes an illegal (b+1)-node.
 To remedy an overflow, we split node w by moving the median entry

of w into the parent of w and replacing w with a (b+1)/2-node w
and a (b+1)/2-node w.

 Removing an entry from an (a,b) tree is similar to
what was done for (2,4) trees.
 An underflow occurs when a key is removed from an a-node w,

distinct from the root, which causes w to become an (a−1)-node.
 To remedy an underflow, we perform a transfer with a sibling of w

that is not an a-node or we perform a fusion of w with a sibling that
is an a-node.

35

36

B-Trees 2/14/2019 9:02 AM

19

37

B-Trees
 A version of the (a,b) tree data structure, which is the best-known

method for maintaining a map in external memory, is “B-tree.”
 A B-tree of order d is an (a,b) tree with a = d/2 and b = d.

38

Computer Memory
 In order to implement any data structure on an actual

computer, we need to use computer memory.
 Computer memory is organized into a sequence of words,

each of which typically consists of 4, 8, or 16 bytes
(depending on the computer).

 These memory words are numbered from 0 to N −1, where
N is the number of memory words available to the
computer.

 The number associated with each memory word is known
as its memory address.

37

38

B-Trees 2/14/2019 9:02 AM

20

39

Memory Hierarchies
 Computers have a hierarchy of different kinds of memories, which

vary in terms of their size and distance from the CPU.
 Closest to the CPU are the internal registers. Access to such

locations is very fast, but there are relatively few such locations.
 At the second level in the hierarchy are the memory caches.
 At the third level in the hierarchy is the internal memory, which is

also known as main memory or core memory.
 Another level in the hierarchy is the external memory, which

usually consists of disks.

40

A Typical Disk Drive

39

40

B-Trees 2/14/2019 9:02 AM

21

41

Disk Access
Disk Access Time =

Seek Time (moving disk head to correct track)
+ Rotational Delay (rotating disk to correct block in track)
+ Transfer Time (time to transfer block of data to main memory)

1 disk access ≡ Several million machine instructions

The time required to access a data value on a disk or
tape dominates any efficiency analysis of an algorithm
over internal memory.

I/O complexity
 Consider the problem of maintaining a large collection of

items that does not fit in main memory, such as a
typical database.

 In this context, we refer to the external memory is
divided into blocks, which we call disk blocks.

 The transfer of a block between external memory and
primary memory is a disk transfer or I/O.

 There is a great time difference that exists between
main memory accesses and disk accesses

 Thus, we want to minimize the number of disk transfers
needed in an algorithm. We refer to this count as the
I/O complexity of the algorithm involved.

42

41

42

B-Trees 2/14/2019 9:02 AM

22

I/O Complexity

43

 Proof:
 Each time we access a node to perform a search or an

update operation, we need only perform a single disk
transfer.

 Each search or update requires that we examine at most
O(1) nodes for each level of the tree.

B+-tree

9

5

1 3 5 6 30 409 16 17

16 30

 internal/index node

 leaf/data node

Same structure as B-trees,
except that all data are stored
on leaf nodes; internal nodes
contain only key values.

43

44

B-Trees 2/14/2019 9:02 AM

23

B+-Trees
 Same structure as B-trees, except that all

data are stored on leaf nodes; internal nodes
contain only key values.

 All internal nodes are stored in internal
memory.

 I/O Complexity:
 Search: O(1) I/O disk operations
 Insert: O(1) disk operations
 Deletion: O(log(n)) disk operations

Virtual Memory
 Virtual memory consists of providing an address

space as large as the capacity of the external
memory, and of transferring data in the secondary
level into the primary level when they are addressed.
 Virtual memory does not limit the programmer to the

constraint of the internal memory size.
 The concept of bringing data into primary memory is

called caching, and it is motivated by temporal
locality.

 By bringing data into primary memory, we are hoping
that it will be accessed again soon, and we will be
able to respond quickly to all the requests for this
data that come in the near future.

46

45

46

B-Trees 2/14/2019 9:02 AM

24

Page Replacement Strategies
 When a new block is referenced and the space for

blocks from external memory is full, we must evict an
existing block.

 There are several such page replacement
strategies, including:
 FIFO
 LIFO
 Random

47

The Random Strategy
 Choose a page at random to evict from the cache.

 The overhead involved in implementing this policy is an O(1)
additional amount of work per page replacement.

 Still, this policy makes no attempt to take advantage of any
temporal locality exhibited by a user’s browsing.

48

47

48

B-Trees 2/14/2019 9:02 AM

25

The FIFO Strategy
 The FIFO strategy is quite simple to implement, as it only

requires a queue Q to store references to the pages in the cache.
 Pages are enqueued in Q when they are referenced, and then are

brought into the cache.
 When a page needs to be evicted, the computer simply performs a

dequeue operation on Q to determine which page to evict. Thus, this
policy also requires O(1) additional work per page replacement.

 Moreover, it tries to take some advantage of temporal locality.

49

The LRU Strategy
 The LRU strategy evicts the page that was least-

recently used.
 From a policy point of view, this is an excellent approach, but

it is costly from an implementation point of view.
 Implementing the LRU strategy requires the use of an

adaptable priority queue Q that supports updating the priority
of existing pages. If Q is implemented with a sorted sequence
based on a linked list, then the overhead for each page
request and page replacement is O(1).

50

49

50

B-Trees 2/14/2019 9:02 AM

26

Interview problem
 How to print all paths from the root to a

leaf in a binary tree?

51

A-2.2

52

Suppose you work for a company, iPuritan.com, that has strict rules for
when two employees, x and y, may date one another, requiring
approval from their lowest level common supervisor. The employees at
iPuritan.com are organized in a tree, T, such that each node in T
corresponds to an employee and each employee, z, is considered a
supervisor for all of the employees in the subtree of T rooted at z
(including z itself). The lowest-level common supervisor for x and y is
the employee lowest in the organizational chart, T, that is a supervisor
for both x and y. Thus, to find a lowest-level common supervisor for
the two employees, x and y, you need to find the lowest common
ancestor (LCA) between the two nodes for x and y, which is the lowest
node in T that has both x and y as descendants (where we allow a
node to be a descendant of itself). Given the nodes corresponding to
the two employees x and y, describe an efficient algorithm for finding
the supervisor who may approve whether x and y may date each other,
that is, the LCA of x and y in T. What is the running time of your
method?

51

52

B-Trees 2/14/2019 9:02 AM

27

A-2.3

53

Suppose you work for a company, iPilgrim.com, whose n employees are organized
in a tree T, so that each node is associated with an employee and each
employee is considered a supervisor for all the employees (including themselves)
in his or her subtree in T, as in the previous exercise. Furthermore, suppose that
communication in iPilgrim is done the “old fashioned” way, where, for an employee,
x, to send a message to an employee, y, x must route this message up
to a lowest-level common supervisor of x and y, who then routes this message
down to y. The problem is to design an algorithm for finding the length of a
longest route that any message must travel in iPilgrim.com. That is, for any node
v in T, let dv denote the depth of v in T. The distance between two nodes v
and w in T is dv + dw − 2du, where u is the LCA u of v and w (as defined in
the previous exercise). The diameter of T is the maximum distance between two
nodes in T. Thus, the length of a longest route that any message must travel in
iPilgrim.com is equal to the diameter of T. Describe an efficient algorithm for
finding the diameter of T. What is the running time of your method?

A-3.1

54

Suppose you are asked to automate the prescription fulfillment system
for a pharmacy, MailDrugs. When an order comes in, it is given as a
sequence of requests, “x1 ml of drug y1,” “x2 ml of drug y2,” “x3 ml of
drug y3,” and so on, where x1 < x2 < x3 < ・ ・ ・ < xk. MailDrugs has a
practically unlimited supply of n distinctly sized empty drug bottles,
each specified by its capacity in milliliters (such 150 ml or 325 ml). To
process a drug order, as specified above, you need to match each
request, “xi ml of drug yi,” with the size of the smallest bottle in the
inventory than can hold xi milliliters. Describe how to process such a
drug order of k requests so that it can be fulfilled in O(k log(n/k)) time,
assuming the bottle sizes are stored in an array, T, ordered by their
capacities in milliliters.

53

54

B-Trees 2/14/2019 9:02 AM

28

A-3.2

55

Imagine that you work for a database company, which has a popular
system for maintaining sorted sets. After a negative review in an
influential technology website, the company has decided it needs to
convert all of its indexing software from using sorted arrays to an
indexing strategy based on using binary search trees, so as to be
able to support insertions and deletions more efficiently. Your job is
to write a program that can take a sorted array, A, of n elements,
and construct a binary search tree, T, storing these same elements,
so that doing a binary search for any element in T will run in O(log n)
time. Describe an O(n)-time algorithm for doing this conversion.

A-3.3

56

Imagine that you work for a database company, which has a popular
system for maintaining sorted sets. After a negative review in an
influential technology website, the company has decided it needs to
convert all of its indexing software from using sorted arrays to an
indexing strategy based on using binary search trees, so as to be
able to support insertions and deletions more efficiently. Your job is
to write a program that can take a sorted array, A, of n elements,
and construct a binary search tree, T, storing these same elements,
so that doing a binary search for any element in T will run in O(log n)
time. Describe an O(n)-time algorithm for doing this conversion.

55

56

