
Graphs 12/10/2019 11:23 AM

1

1

NP-Completeness
x1 x3x2x1 x4x3x2 x4

11

12

13 21

22

23 31

32

33

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

2

Running Time Revisited
Input size, n
 To be exact, let n denote the number of bits in a nonunary

encoding of the input
All the polynomial-time algorithms studied so far in this
course run in polynomial time using this definition of
input size.
 Exception: any pseudo-polynomial time algorithm

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

1

2

Graphs 12/10/2019 11:23 AM

2

3

Dealing with Hard Problems
What to do when we find a problem that
looks hard…

I couldn’t find a polynomial-time algorithm;
I guess I’m too dumb.

(cartoon inspired by [Garey-Johnson, 79])

4

Dealing with Hard Problems
Sometimes we can prove a strong lower
bound… (but not usually)

I couldn’t find a polynomial-time algorithm,
because no such algorithm exists!

(cartoon inspired by [Garey-Johnson, 79])

3

4

Graphs 12/10/2019 11:23 AM

3

5

Dealing with Hard Problems
NP-completeness let’s us show collectively
that a problem is hard.

I couldn’t find a polynomial-time algorithm,
but neither could all these other smart people.

(cartoon inspired by [Garey-Johnson, 79])

6

P： Polynomial-Time
Decision Problems

To simplify the notion of “hardness,” we will
focus on the following:
 Polynomial-time as the cut-off for efficiency: a

problem is hard if it doesn’t have a polynomial-
time algorithm

 Decision problems: output is 1 or 0 (“yes” or “no”)
 Examples:

 Does a given graph G have a Hamiltonian Euler tour?
 Does a text T contain a pattern P?
 Does an instance of 0/1 Knapsack have a solution with

benefit at least K?
 Does a graph G have an MST with weight at most K?

5

6

Graphs 12/10/2019 11:23 AM

4

7

The Complexity Class NP
We say that an algorithm is non-deterministic if it uses
the following operation:
 Choose(n): non-deterministically chooses a value

k, 0 ≤k < n.
Choose(n) looks like random(n), but it may make wise choices.
Can be used to choose a list of numbers.

We say that a non-deterministic algorithm A accepts
an input x if there exists some sequence of choose
operations that causes A to output “yes” on input x.
NP is the complexity class consisting of all problems
accepted by polynomial-time non-deterministic
algorithms.

8

NP example
Problem: Decide if TSP has a tour bounded by K
Algorithm getTSP(V, E)

// Non-deterministically choose a set T of n edges:
T = { };
while (|T| < n) {

k = choose(|E|);
move ek from E to T; }

Test that T forms a tour
Test that T has weight at most K
If both tests are okay, return “yes” else return “no”

Analysis: the while loop and testing takes O(n+m)
time, so this algorithm runs in polynomial time.

7

8

Graphs 12/10/2019 11:23 AM

5

9

The Complexity Class NP
Alternate Definition

We say that an algorithm B verifies the acceptance
of a problem L if and only if, for any x in L, there
exists a certificate y such that B outputs “yes” on
input (x, y).
Theorem: NP is the complexity class consisting of all
problems verified by polynomial-time algorithms.

10

NP example (2)
Problem: Decide if TSP has a tour bounded by K

Verification Algorithm:
VerifyTSP(V, E, T)

1. Use T as a certificate, where T is a set of n edges
2. Test that T forms a tour
3. Test that T has weight at most K
4. If both tests are okay, return “yes”, otherwise, “no”

Analysis: Verification takes O(n+m) time, so this
algorithm runs in polynomial time.

9

10

Graphs 12/10/2019 11:23 AM

6

11

Equivalence of the
Two Definitions

Suppose A is a non-deterministic algorithm
Let y be a certificate consisting of all the outcomes of the
choose steps that A uses.
We can create a verification algorithm B that uses y instead of
A’s choose steps
If A accepts on x, then there is a certificate y that allows us to
verify this (namely, the choose steps A made)
If A runs in polynomial-time, so does this verification
algorithm B.

Suppose B is a verification algorithm
Non-deterministically choose a certificate y
Run B on x and y
If B(x, y) runs in polynomial-time, so does this non-
deterministic algorithm A.

12

getTSP vs VerifyTSP
Problem: Decide if TSP has a tour bounded by K
Algorithm getTSP(V, E)

// Non-deterministically choose a set T of n edges:
T = { };
while (|T| < n) { k = choose(|E|); move ek from E to T; }
Test that T forms a tour
Test that T has weight at most K
If both tests are okay, return “yes” else return “no”

VerifyTSP(V, E, T)
1. Use T as a certificate, where T is a set of n edges
2. Test that T forms a tour
3. Test that T has weight at most K
4. If both tests are okay, return “yes”, otherwise, “no”

11

12

Graphs 12/10/2019 11:23 AM

7

13

The most famous open
problem in Computer Science

By (either) definition, P is a subset of NP.

Major open question: P = NP?

Most researchers believe that P and NP are different.

Possible Quiz Question
The decision version of the Knapsack
problem: Given a collection of items with
weights wi and benefits vi, 1 i  n, is there a
subset of items whose total weight is at most
W and whose total benefit is at least K?
Show this decision problem is in NP by
providing a polynomial-time verification
algorithm.

14

13

14

Graphs 12/10/2019 11:23 AM

8

15

Polynomial-Time Reduction

Suppose we could solve Y in polynomial-time by
algorithm B. Can we solve problem X using B in
polynomial time?

Reduction: Problem X polynomially reduces to
problem Y if arbitrary instances (i.e., inputs) of problem
X can be solved using:

 Polynomial number of standard computational
steps, plus

 Polynomial number of calls to the algorithm B that
solves problem Y.

 Notation: X  P Y.

16

Polynomial-Time Reduction

If X  P Y, and assume the algorithm to solve Y is B, we
may obtain the algorithm A which uses B to solve X (the
time spent by B is not cared).

Design algorithms. If X  P Y and Y can be solved in
polynomial-time, then X can also be solved in polynomial
time. That is, if Y is easy, so is X.

Establish equivalence. If X  P Y and Y  P X, we use
notation X  P Y.

Prove Hardness of Y: If X  P Y and X is known to be
hard, then Y must be hard as well.

15

16

Graphs 12/10/2019 11:23 AM

9

17

Independent Set

INDEPENDENT SET: Given a graph G =
(V, E) and an integer k, is there a subset of
vertices S  V such that |S|  k, and for each
edge at most one of its endpoints is in S?

Ex. Is there an independent set of size 
6? Yes.

Ex. Is there an independent set of size 
7? No.

independent set

Clique

Clique: Given a graph G = (V, E) and an integer k, is
there a subset of vertices S  V such that |S|  k, and
for each pair (x, y) of points in S, (x, y) is an edge of E?

Claim. CLIQUE P INDEPENDENT-SET.
Proof. We show S is an independent set of G iff S is a
clique of G’, where G’ is the complement of G: G’ = (V,
V2 – E).

17

18

Graphs 12/10/2019 11:23 AM

10

19

Vertex Cover

VERTEX COVER: Given a graph
G = (V, E) and an integer k, is
there a subset of vertices S  V
such that |S|  k, and for each
edge, at least one of its
endpoints is in S?

Ex. Is there a vertex cover of
size  4? Yes.

Ex. Is there a vertex cover of
size  3? No.

vertex cover

Vertex Cover and Independent Set

Claim. VERTEX-COVER P
INDEPENDENT-SET.

Proof. We show S is an
independent set iff V  S is a
vertex cover.
Consequently, S is a maximum
independent set iff V – S is a
minimum vertex cover. If we
have an efficient algorithm to
solve one, we will have efficient
algorithm to solve the other.

vertex cover

independent set

19

20

Graphs 12/10/2019 11:23 AM

11

21

Vertex Cover and Independent Set
Claim. VERTEX-COVER P INDEPENDENT-SET.
Proof. We show S is an independent set iff V  S is a vertex cover.

 Let S be any independent set.
 Consider an arbitrary edge (u, v).
 S independent  u  S or v  S  u  V  S or v  V  S.
 Thus, V  S covers (u, v).

 Let V  S be any vertex cover.
 Consider two nodes u  S and v  S.
 Observe that (u, v)  E since V  S is a vertex cover.
 Thus, no two nodes in S are joined by an edge  S

independent set. ▪

22

Set Cover
SET COVER: Given a set U of elements, a collection S1, S2, . . . , Sm

of subsets of U, and an integer k, does there exist a collection of  k of
these sets whose union is equal to U?

Sample application.
 m available pieces of software.
 Set U of n capabilities that we would like our system to have.
 The ith piece of software provides the set Si  U of capabilities.
 Goal: achieve all n capabilities using fewest pieces of software.

Ex:
U = { 1, 2, 3, 4, 5, 6, 7 }

k = 2
S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1} S6 = {1, 2, 6, 7}

21

22

Graphs 12/10/2019 11:23 AM

12

23

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Vertex Cover Reduces to Set Cover
Claim. VERTEX-COVER  P SET-COVER.

Proof. Given a VERTEX-COVER instance G = (V, E), k, we
construct a set cover instance whose size equals the size of the
vertex cover instance.

Construction.
 Create SET-COVER instance:

 k = k, U = E, Sv = {e  E : e incident to v }
 Set-cover of size  k iff vertex cover of size  k. ▪

a

d

b

e

f c

VERTEX COVER

k = 2
e1

e2 e3

e5

e4

e6

e7

For the clique problem, suppose we have an algorithm A to
answer the decision problem: A(G, k) = yes iff G has a clique of
size k. How can we find the maximum clique of G?

Step 1: Decide k, the size of the maximum clique:
for i from n downto 1, if A(G, i) = yes and A(G, i+1) = no, then

return i;
Step 2: Decide the actual max clique:

for each vertex v in G
if (A(G - v, k) = yes) G = G - v;
// G – v means v is deleted from G.

Suppose we have an algorithm B which returns the maximum
clique of G. How can we solve the decision version of the clique
problem?

Decision vs Optimization: Clique

23

24

Graphs 12/10/2019 11:23 AM

13

25

Decision vs Optimization: Vertex Cover

Decision Problem:
 Input: a graph G = (V, E), integer k.
 Question: Does G have a vertex cover of size  k?
Optimization problem. Find vertex cover of minimum cardinality

of G.

Self-reducibility: Decision and Optimization Problems are all
equivalent (=P)

Applies to all (NP-complete) problems.
 Justifies our focus on decision problems.

Vertex Cover Problem

Ex: Reduce Optimization to Decision
To find min cardinality vertex cover.
 (Binary) search for cardinality k* of min vertex

cover.
 Find a vertex v such that G  v has a vertex cover

of size  k* - 1.
 any vertex in any min vertex cover will have this property

 Include v in the vertex cover.
 Recursively find a min vertex cover in G  v.

delete v and all incident edges

25

26

Graphs 12/10/2019 11:23 AM

14

27

An Interesting Problem

NOT

OR

AND

Logic Gates:

Inputs:

0
1

0

1

1
1

1

1

Output:

0

1

0
0 1

A Boolean circuit is a circuit of AND, OR, and NOT
gates; the CIRCUIT-SAT problem is to determine if
there is an assignment of 0’s and 1’s to a circuit’s
inputs so that the circuit outputs 1.

28

CIRCUIT-SAT is in NP

NOT

OR

AND

Logic Gates:

Inputs:

0
1

0

1

1
1

1

1

Output:

0

1

0
0 1

Non-deterministically choose a set of Boolean values
for all inputs of the circuit, then test each gate’s I/O.

27

28

Graphs 12/10/2019 11:23 AM

15

29

NP-Completeness
A problem L is NP-hard if every problem X in
NP can be reduced to L in polynomial time.
That is, for each problem X in NP, we can take
an input x for X, transform x in polynomial
time to an input x’ for L such that x is in M if
and only if x’ is in L.
L is NP-complete if it’s in NP and is NP-hard.

NP poly-time L

30

Cook-Levin Theorem
CIRCUIT-SAT is NP-complete.
 We already showed it is in NP.

To prove it is NP-hard, we have to show that every
problem in NP can be reduced to it.
 Let M be in NP, and let x be an input for M.
 Let y be a certificate that allows us to verify membership in M in

polynomial time, p(n), by some algorithm D(x, y).
 Let S be a circuit of size at most O(n2c) that simulates a

computer (details omitted…)

NP poly-time CIRCUIT-SATM

29

30

Graphs 12/10/2019 11:23 AM

16

31

Cook-Levin Proof

< p(n)
cells

x

D

W

y

x

D

W

y

S S

x

D

W

y

p(n)
steps

In
p

u
ts

n

We can build a circuit that simulates the verification of x’s
membership in M using y.

 Let W be the working storage
for D (including registers,
such as program counter); let
D be given in RAM “machine
code.”

 Simulate O(nc) = p(n) steps of
D by replicating circuit S for
each step of D. Only input: y.

 Circuit is satisfiable if and only
if x is accepted by D with
some certificate y

 Total size is still polynomial:
O(n3c).

Output
0/1

from D

32

Thoughts about
P and NP

Belief: P is a proper subset of NP.
Implication: the NP-complete problems are the hardest in NP.
Why: Because if we could solve an NP-complete problem in
polynomial time, we could solve every problem in NP in polynomial
time.
That is, if an NP-complete problem is solvable in polynomial time,
then P=NP.
Since so many people have attempted without success to find
polynomial-time solutions to NP-complete problems, showing your
problem is NP-complete is equivalent to showing that a lot of smart
people have worked on your problem and found no polynomial-
time algorithm.

NP P

CIRCUIT-SAT

NP-complete
problems live here

31

32

Graphs 12/10/2019 11:23 AM

17

Recall of Definitions
A decision problem M can be described by the set of true-instances
of M. For example, let PRIMES be the problem of deciding a number
is prime, then PRIMES = { 2, 3, 5, 7, … }.
A problem M is polynomial-time reducible to a problem L if an
instance (input) x for M can be transformed in polynomial time to an
instance y for L such that x is in M iff y is in L. That is, x is a true-
instance of M if and only if y is a true-instance of L.
 Denote this by M  P L.

A problem L is NP-hard if every problem in NP is polynomial-time
reducible to L.
A problem is NP-complete if it is in NP and it is NP-hard.
CIRCUIT-SAT is NP-complete:
 CIRCUIT-SAT is in NP
 For every M in NP, M  P CIRCUIT-SAT.

Inputs:

0
1

0

1

1
1

1

1

Output:

0

1

0
0 1

34

Transitivity of Reducibility
If A  P B and B  P C, then A  P C.
 An input x for A can be converted to y for B, such that x is in A

if and only if y is in B. Likewise, for B to C.
 Convert y into z for C such that y is in B iff z is in C.
 Hence, if x is in A, y is in B, then z is in C.
 Likewise, if z is in C, y is in B, then x is in A.
 Thus, A  P C, since polynomials are closed under composition.

33

34

Graphs 12/10/2019 11:23 AM

18

35

SAT
A CNF Boolean formula is a conjunction (AND) of
clauses; a clause is a disjunction (OR) of literals; a a
literal is a variable or negation of a variable:
 (a  b  ¬d  e)  (¬a  ¬c)  (¬b  c  d  e) 

(a  ¬c  ¬e)
 OR: , AND: , NOT: ¬

SAT: Given a Boolean formula S, is S satisfiable, that
is, can we assign 0’s and 1’s to the variables so that
S is 1 (“true”)?
 Easy to see that SAT is in NP:

 Non-deterministically choose an assignment of 0’s and
1’s to the variables and then evaluate each clause. If
they are all 1 (“true”), then the formula is satisfiable.

36

SAT is NP-complete
Reduce CIRCUIT-SAT to SAT.
 Given a Boolean circuit, make a variable for every input and

gate.
 Create a sub-formula for each gate, characterizing its effect.

Form the formula as the output variable AND-ed with all
these sub-formulas:
 Ex: m((ab)↔e)(c↔¬f)(d↔¬g)(e↔¬h)(ef↔i)…

Inputs:

a
b

c

e

f
i

d

m

Output:

h

k

g j n

The formula is
satisfiable
if and only if the
Boolean circuit
is satisfiable.

35

36

Graphs 12/10/2019 11:23 AM

19

37

3SAT
The SAT problem is still NP-complete even if the formula is a
conjunction of disjuncts, that is, it is in conjunctive normal form
(CNF).
The SAT problem is still NP-complete even if it is in CNF and
every clause has just 3 literals (a variable or its negation):
 (ab¬d)(¬a¬ce)(¬bde)(a¬c¬e)

SAT and CIRCUIT-SAT are equivalent. Reduction from SAT. E.g.,
m((ab)↔e)(c↔¬f)(d↔¬g)(e↔¬h)(ef↔i)…
Inputs:

a
b

c

e

f
i

d

m

Output:

h

k

g j n

38

Vertex Cover
A vertex cover of graph G=(V,E) is a subset W of V, such
that, for every edge (a,b) in E, a is in W or b is in W.
VERTEX-COVER: Given a graph G and an integer K, is
does G have a vertex cover of size at most K?

VERTEX-COVER is in NP: Non-deterministically choose a
subset W of size K and check that every edge is covered
by W.

37

38

Graphs 12/10/2019 11:23 AM

20

39

Vertex-Cover is NP-complete
Reduce 3SAT to VERTEX-COVER.

A CNF is a conjunction of m clauses.
Let S be a Boolean formula in CNF with each clause
having 3 literals (i.e., variables or negation of
variables).
For each variable x, create a node for x and ¬x, and
connect these two:

For each clause (a  b  c), create a triangle and
connect these three nodes.

x ¬x

c b

a

40

Vertex-Cover is NP-complete
Completing the construction

Connect each literal in a clause triangle to its copy
in a variable pair.
E.g., a clause (x  y  z)

Let n = # of variables
Let m = # of clauses
Set K = n+2m

y ¬y

z y

x

x ¬x z ¬z

39

40

Graphs 12/10/2019 11:23 AM

21

41

Vertex-Cover is NP-complete

¬dd

11

12

13 21

22

23 31

32

33

Example: (abc)(¬a b ¬ c)(¬b ¬c ¬d)

Graph has vertex cover of size K=4+6=10 iff formula is
satisfiable.

¬cc¬aa ¬bb

42

Clique
A clique of a graph G=(V,E) is a subgraph C that is
fully-connected (every pair in C has an edge).
CLIQUE: Given a graph G and an integer K, is there a
clique in G of size at least K?

CLIQUE is in NP: non-deterministically choose a
subset C of size K and check that every pair in C has
an edge in G.

This graph has
a clique of size 5

41

42

Graphs 12/10/2019 11:23 AM

22

43

CLIQUE is NP-Complete

G’G

Reduction from VERTEX-COVER.
A graph G has a vertex cover of size K if and only if
it’s complement has a clique of size n-K.

44

Possible Quiz Question
An independent set of a graph G=(V,E) is a subset
S of V such that there are no edges in E connecting
any two points of S.
INDEPENDENT-SET: Given a graph G and an integer
K, is there an independent set in G of size at least K?

Prove formally that INDEPENDENT-SET is NP-complete.

43

44

Graphs 12/10/2019 11:23 AM

23

45

Some Other
NP-Complete Problems

SET-COVER: Given a collection of m sets, are
there K of these sets whose union is the
same as the whole collection of m sets?
 NP-complete by reduction from VERTEX-COVER

SUBSET-SUM: Given a set of integers and a
distinguished integer K, is there a subset of
the integers that sums to K?
 NP-complete by reduction from VERTEX-COVER

46

Some Other
NP-Complete Problems

0/1 Knapsack: Given a collection of items with
weights and benefits, is there a subset of weight
at most W and benefit at least K?
 NP-complete by reduction from SUBSET-SUM

Hamiltonian-Cycle: Given an graph G, is there a
cycle in G that visits each vertex exactly once?
 NP-complete by reduction from VERTEX-COVER

Traveling Salesman Tour: Given a complete
weighted graph G, is there a cycle that visits each
vertex and has total cost at most K?
 NP-complete by reduction from Hamiltonian-Cycle.

45

46

Graphs 12/10/2019 11:23 AM

24

Integer Linear Programming
Types of Integer Linear Programming Models
Graphical Solution for an All-Integer LP
Spreadsheet Solution for an All-Integer LP
Application Involving 0-l Variables
Special 0-1 Constraints

Example: Integer Linear Programming

Consider the following all-integer linear program:

Max 3x1 + 2x2

s.t. 3x1 + x2 < 9
x1 + 3x2 < 7

-x1 + x2 < 1

x1, x2 > 0 and integer

47

48

Graphs 12/10/2019 11:23 AM

25

Integer Linear Programming
A linear program in which all the variables are restricted to be

integers is called an integer linear program (ILP).
If only a subset of the variables are restricted to be integers, the

problem is called a mixed integer linear program (MILP).
Binary variables are variables whose values are restricted to be 0 or 1.

If all variables are restricted to be 0 or 1, the problem is called a
0-1 or binary integer program.

Special 0-1 Constraints
When xi and and xj represent binary variables designating whether

projects i and j have been completed, the following special
constraints may be formulated:

� At most k out of n projects will be completed:
xj < k

� Project j is conditional on project i:
xj - xi < 0

� Project i is a co-requisite for project j:
xj - xi = 0

� Projects i and j are mutually exclusive:
xi + xj < 1

49

50

Graphs 12/10/2019 11:23 AM

26

Decision Problem: 0-1 Programming
0-1 PROGRAMMING. Given a n by m matrix A, a vector B of m

numbers, a vector X of n variables, is there a binary solution of
X such that AX  B ?

Claim. 3-SAT  P 0-1 PROGRAMMING.

Pf.

51

52

Directed Hamiltonian Cycle
DIR-HAM-CYCLE: given a digraph G = (V, E), does there exists a simple
directed cycle  that contains every node in V?

Claim. HAM-CYCLE P DIR-HAM-CYCLE.

Claim. DIR-HAM-CYCLE P HAM-CYCLE.

Pf. Given a directed graph G = (V, E), construct an undirected graph G'
with 3|V| nodes.

v

a

b

c

d

e
vin

aout

bout

cout

din

ein

G G'

v vout

51

52

Graphs 12/10/2019 11:23 AM

27

53

Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G' does.

Pf. 
� Suppose G has a directed Hamiltonian cycle .
� Then G' has an undirected Hamiltonian cycle (same order).

Pf. 
� Suppose G' has an undirected Hamiltonian cycle '.
� ' must visit nodes in G' using one of following two orders:

…, B, G, R, B, G, R, B, G, R, B, …
…, B, R, G, B, R, G, B, R, G, B, …

� Blue nodes in ' make up directed Hamiltonian cycle  in G, or
reverse of one. ▪

54

Directed Hamiltonian Path
DIR-HAM-PATH: given a digraph G = (V, E), does there exists a simple
directed path  that contains every node in V?

Claim. DIR-HAM-CYCLE  P DIR-HAM-PATH.

Pf. Given a directed graph G = (V, E), construct a directed graph G'
with |V|+1 nodes.

v

a

b

c

d

e
vin

G G'

vout

a

b

c

d

e

53

54

Graphs 12/10/2019 11:23 AM

28

55

Directed Hamiltonian Path
DIR-HAM-PATH: given a digraph G = (V, E), does there exists a simple
directed path  that contains every node in V?

Claim. DIR-HAM-PATH  P DIR-HAM-CYCLE.

Pf. Given a directed graph G = (V, E), construct a directed graph G'
with |V|+2 nodes: G’ = (V  {s, t}, E  { (s, x), (x, t), (t, s) | x  V }).

Traveling Salesman Problem
Traveling Salesman Problem (TSP): Given a complete graph with

nonnegative edge costs, find a minimum cost cycle visiting
every vertex exactly once.

Example: Given a number of cities and the costs of traveling
from any city to any other city, what is the cheapest round-
trip route that visits each city exactly once and then returns
to the starting city

TSP: Given a complete weighted graph G = (V, E, W) and an
number d, does there exists a simple cycle  that contains
every node in V and its total weight is bounded by d?

Claim. HAM-CYCLE  P TSP.

Pf. Given a graph G = (V, E), construct a complete weighted
graph G' = (V, VxV, W), such that W(e) = 1 for e in E and W(e) =
2 for e not in E, and d = |V|.

55

56

Graphs 12/10/2019 11:23 AM

29

57

Subset Sum
SUBSET-SUM. Given a set of natural numbers w1, …, wn and an integer
W, is there a subset that adds up to exactly W?

Ex: { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 }, W = 3754.
Yes. 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

Remark. With arithmetic problems, input integers are encoded in
binary. Polynomial reduction must be polynomial in the size of binary
encoding.

Claim. 3-SAT  P SUBSET-SUM.
Pf. Given an instance  of 3-SAT, we construct an instance of SUBSET-
SUM that has solution iff  is satisfiable.

58

Subset Sum
Construction. Given 3-SAT instance  with n variables and k clauses,
form 2n + 2k decimal integers, each of n+k digits, as illustrated below.

Claim.  is satisfiable iff there exists a subset that sums to W.
Pf. No carries possible.

C1  x  y  z

C2  x  y  z

C3  x  y  z

dummies to get clause
columns to sum to 4

y

x

z

0 0 0 0 1 0
0 0 0 2 0 0
0 0 0 1 0 0
0 0 1 0 0 1

0 1 0 0 1 1
0 1 0 1 0 0
1 0 0 1 0 1
1 0 0 0 1 0

0 0 1 1 1 0

x y z C1 C2 C3

0 0 0 0 0 2
0 0 0 0 0 1
0 0 0 0 2 0

1 1 1 4 4 4

 x

 y

 z

W

10

200

100

1,001

10,011

10,100

100,101

100,010

1,110

2

1

20

111,444

57

58

Graphs 12/10/2019 11:23 AM

30

Set Partition
PARTITION. Given a set of natural numbers w1, …, wn , is there a subset

that adds up to exactly half sum of all wi?

Claim. PARTITION  P SUBSET-SUM.

Pf. PARTITION is a special of SUBSET-SUM.

Claim. SUBSET-SUM  P PARTITION.

Pf.

59

60

Possible Quiz Question
Given an instance (S, k) of SubsetSum problem,
where S is a set of integers and k is another integer,
we construct S’ = S  { x, y }, where x = sum(S) +
k, y = 2sum(S) – k, and sum(S) = xS x. Prove that
S’ can be constructed from S in polynomial time and
there exists a subset X  S’ such that sum(X) = k iff
S’ can be partitioned into X and Y such that sum(X) =
sum(Y), where S’ = XY and XY = .

59

60

Graphs 12/10/2019 11:23 AM

31

Bin Packing
BIN-PACKING. Given a set S of real numbers w1, …, wn , 0 < wi  1, and

integer K, is there a partition of S into K subsets such that each
subset adds up no more than 1?

Claim. PARTITION  P BIN-PACKING.

Pf.

61

62

Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction

61

62

