
1

Dynamic Programming

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Terrible Fibonacci Computation

Fibonacci sequence:
f1=1
f2=1
f3=2
f4=3
f5=5
f6=8
f7=13
……

f(n)
1. if (n=1) or (n=2) then return 1;
2. else return f(n-1)+f(n-2);

This algorithm is far from being
efficient, as there are many duplicate
recursive calls to the procedure.

Treat Space for Time

f(n)
1. if ((n=1) or (n=2)) return 1;
2. else {
3. fn_1=1;
4. fn_2=1;
5. for i 3 to n {
6. fn=fn_1+fn_2;
7. fn_2=fn_1;
8. fn_1=fn;
9. }
10. }
11. return fn;

Time: n-2 additions (n)
Space: (1)

The main idea of
dynamic
programming

Dynamic Programming
An algorithm that employs the dynamic programming
technique is not necessarily recursive by itself, but
the underlying solution of the problem is usually
started in the form of a recursive function.

This technique resorts to evaluating the recurrence in
a bottom-up manner, storing intermediate
results that are used later on to compute the
desired solution.

This technique applies to many combinatorial
optimization problems to derive efficient
algorithms.

5

Task Scheduling
Given: a set T of n tasks, start time, si and finish time, fi
(where si < fi)
Goal: Perform a maximum number of compatible jobs
on a single machine.

Time0 1 2 3 4 5 6 7 8 9 10 11

f
g

h

e

a
b

c
d

6

Greedy algorithm. Consider jobs in increasing order of finish
time. Take each job in the order, provided it's compatible with
the ones already taken.

Implementation: O(n log n).
Let job j* denote the job that was added last to A.
Job j is compatible with A if sj fj*, i.e., j starts after j* finished.

Sort jobs by finish times so that f1 f2 ... fn.
A
for j = 1 to n {

if (job j compatible with A)
A A {j}

}
return A

set of jobs selected

Task Scheduling: Greedy Algorithm

Telescope Scheduling Problem
Large, powerful telescopes are precious resources
that are typically oversubscribed by the astronomers
who request times to use them.
This high demand for observation times is especially
true, for instance, for a space telescope, which could
receive thousands of observation requests per
month.
The start and finish times for an observation request
are specified by the astronomer requesting the
observation; the benefit of a request is determined
by an administrator or a review committee.

7

Telescope Scheduling Problem
The input to the telescope scheduling problem is a list,
L, of observation requests, where each request, i,
consists of the following elements:

a requested start time, si, which is the moment
when a requested observation should begin
a finish time, fi, which is the moment when the
observation should finish.
a positive numerical benefit, bi, which is an
indicator of the scientific gain expected by
performing this observation.

Task Scheduling is a special case of this problem
where every task has the same benefit.

8

Goal:

9

The left and right boundary of each rectangle represent the start and
finish times for an observation request. The height of each rectangle
represents its benefit. We list each request’s benefit (Priority) on the
left. The optimal solution has total benefit 17=5+5+2+5.

How to maximize the total benefit of
the observations that are performed
by the schedule?

False Start 1: Brute Force
There is an obvious exponential-time algorithm
for solving this problem, of course, which is to
consider all possible subsets of L and choose
the one that has the highest total benefit
without causing any scheduling conflicts.
Implementing this brute-force algorithm would
take O(n2n) time, where n is the number of
observation requests.
We can do much better than this, however, by
using other programming technique.

10

False Start 2: Greedy Method
A natural greedy strategy would be to consider the
observation requests ordered by non-increasing
benefits, and include each request that doesn’t
conflict with any chosen before it.
This strategy doesn’t lead to an optimal solution,
however. For instance, suppose we had a list containing just 3
requests — one with benefit 100 that conflicts with two
nonconflicting requests with benefit 75 each.

The greedy method would choose the observation with
benefit 100, whereas we can achieve a total benefit of 150
by taking the two requests with benefit 75 each.

How about ordering the observations by finish time?
Possible Quiz Question: Find a counter-example.

11

12

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

Simple subproblems: the subproblems can be
defined in terms of a few variables, such as i, j, k,
and so on.
Subproblem optimality: the global optimum value
can be defined in terms of optimal solutions of
subproblem.
Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

13

Defining Simple Subproblems
A natural way to define general subproblems is to
consider the observation requests according to some
ordering, such as ordered by start times, finish times, or
benefits.
Unlike Greedy Method, we are allowed to undo our
choices, instead of sticking to the greedy choice.
So let us order observations by finish times.

14

Predecessors
For any request i, the set of other requests that conflict with i
cannot be in the solution if i is in the solution.
Define the predecessor, pred(i), for each request, i, then, to be
the largest index, j < i, such that requests i and j don’t conflict. If
there is no such index, then define the predecessor of i to be 0.

15

Subproblem Optimality
A schedule that achieves the optimal value, Bi, either
includes observation i or not.

16

Subproblem is Overlapping
Bi = max{ Bi-1, Bpred(i) + bi } gives the final solution when i=n.
It has subproblem overlap.
Thus, it is most efficient for us to use memoization when
computing Bi values, by storing them in an array, B, which is
indexed from 0 to n.
Given the ordering of requests by finish times and an array, P, so
that P[i] = pred(i), then we can fill in the array, B, using the
following simple algorithm:

Predecessor of i

17

Analysis of the Algorithm
It is easy to see that the running time of this algorithm
is O(n), assuming the list L is ordered by finish times
and we are given the predecessor for each request i.
Of course, we can easily sort L by finish times if it is
not already sorted according to this ordering – O(n
log n).
To compute the predecessor of each request i, we
search fi in L by binary search – O(n log n).

18

Compute Predecessor
To compute the predecessor of each request i, we
search fi in L by binary search on finish times –
O(n log n).

L: (0, 5), (2, 7), (6, 11),
(4, 17), (13, 23),
(24, 28), (9, 30).

2 is before (0, 5) finishes
6 is after (0, 5) finishes
4 is before (0, 5) finishes
13 is after (6, 11) …
24 is after (13, 23) …
9 is after (2, 7) …

19

What are in the optimal solution?
B[n] gives only the optimal total benefit value, not the
actual choices, which can be computed from B[i].
This is typical for dynamic programming solutions.

How:

For j = n downto 1
if B[j] = B[j-1] then

request j is not
chosen

20

Subsequences
A subsequence of a character string
x0x1x2…xn-1 is a string of the form
xi1xi2…xik, where ij < ij+1.
Not the same as substring!
Example String: ABCDEFGHIJK

Subsequence: ACEGJIK
Subsequence: DFGHK
Not subsequence: DAGH

21

The Longest Common
Subsequence (LCS) Problem

Given two strings X and Y, the longest
common subsequence (LCS) problem is to
find a longest subsequence common to both
X and Y
Has applications to DNA similarity testing
(alphabet is {A,C,G,T})
Example: ABCDEFG and XZACKDFWGH have
ACDFG as a longest common subsequence

22

A Poor Approach to the
LCS Problem

A Brute-force solution:
Enumerate all subsequences of X
Test which ones are also subsequences of Y
Pick the longest one.

Analysis:
If X is of length n, then it has 2n

subsequences
This is an exponential-time algorithm!

23

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, l,
m, and so on.
Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems
Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

24

A Dynamic-Programming
Approach to the LCS Problem

Define L[i,j] to be the length of the longest common
subsequence of X[1..i] and Y[1..j].
Allow for 0 as an index, so L[0,k] = 0 and L[k,0]=0, to indicate
that the null part of X or Y has no match with the other.
Then we can define L[i,j] in the general case as follows:
1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)
2. If xi j, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no

match here)

Case 1: Case 2:

25

LCS Algorithm
Algorithm LCS(X,Y):
Input: Strings X and Y with n and m elements, respectively
Output: For i = 1,…,n, j = 1,...,m, the length L[i, j] of a longest string

that is a subsequence of both the string X[1..i] = x1x2…xi and the
string Y [1.. j] = y1y2…yj

for i =1 to n do
L[i,0] = 0

for j =1 to m do
L[0,j] = 0

for i =1 to n do
for j =1 to m do

if xi = yj then
L[i, j] = L[i-1, j-1] + 1

else
L[i, j] = max{L[i-1, j] , L[i, j-1]}

return array L

L is an (n+1)x(m+1) matrix.

26

Analysis of LCS Algorithm
We have two nested loops

The outer one iterates n times
The inner one iterates m times
A constant amount of work is done inside
each iteration of the inner loop
Thus, the total running time is O(nm)

Answer is contained in L[n,m] (and the
subsequence can be recovered from the
L table).

27

From L[i,j] to actual LCS
Algorithm getLCS(X,Y):
Input: Strings X and Y with n and m elements, respectively
Output: One of the longest common subsequence of X and Y.

LCS(X,Y) /* Now, for i = 1,…,n, j = 1,...,m, the length L[i, j] of a longest
string that is a subsequence of both the string X[1..i] = x1x2…xi and
the string Y [1.. j] = y0y1y2…yj */

i = n; j = m;
S = new stack();
while (i > 0 && j > 0) do

if xi = yj then
push(S, xi); i--; j--;

else if L[i-1, j] > L[i, j-1]
i--;

else
j--;

return stack S

28

LCS Algorithm Example
Example:
A=“steal”,
B=“staple”

What is the longest common
subsequence of A and B?

Possible Quiz Question:
What are the content of L[0..7, 0..8] after
calling LCS(A, B), where

A=“vehicle”,
B=“vertices”

Application: DNA Sequence
Alignment

DNA sequences can be viewed as strings of
A, C, G, and T characters, which represent
nucleotides.
Finding the similarities between two DNA
sequences is an important computation
performed in bioinformatics.

For instance, when comparing the DNA of
different organisms, such alignments can highlight
the locations where those organisms have
identical DNA patterns.

29

30

Application: Edit Distance
What is the minimal of

steps needed to convert one
string to another?

ocurrance
occurrence o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

Minimal Edit Distance
Define D[i,j] to be the minimal edit distance of X[1..i] and Y[1..j].
Allow for 0 as an index, so D[0,j] = j and D[i,0]=i, to indicate that
if one string is null, then the length of the other string is the edit
distance.
Then we can define D[i,j] in the general case as follows:
1. If xi=yj, then D[i,j] = D[i-1,j-1] (we can add this match)
2. If xi j, then D[i,j] = min{D[i-1,j]+1, D[i,j-1]+1, D[i-1,j-1]+1}

(we have no match here)

gap mismatch

+1, D[i++++ ,j 1]+1++[i 1,j1111 -1]+1++++

Possible Quiz Question:
Provide a complete algorithm for computing D[i,j] and
analyze its complexity.

32

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
Gap penalty ; mismatch penalty pq.
Cost = sum of gap and mismatch penalties.

Applications.
Basis for Unix/Linux diff.
Speech recognition.
Computational biology.

Application: Edit Distance

33

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, l,
m, and so on.
Subproblem optimality: the global optimum value
can be defined in terms of optimal solutions of
subproblem.
Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

DP Problem Patterns
Telescope Scheduling Problem:

Bi = the max profit from the first i requests
Bi = max(Bi-1, Bpred(i) + bi)

Longest Common Subsequence Problem:
L[i,j] = the length of the longest common subsequence of X[1..i]
and Y[1..j].
L[i,j] = L[i-1,j-1]+1 if X[i]=Y[j], max(L[i-1,j], L[i,j-1]) otherwise

Edit Distance Problem:
D[i,j] = the shortest distance of X[1..i] and Y[1..j].
D[i,j] = D[i-1,j-1] if X[i]=Y[j], min(D[i-1,j-1], D[i-1,j], D[i,j-1])+1
otherwise

Coins in a Line
“Coins in a Line” is a game whose strategy is sometimes asked
about during job interviews.
In this game, an even number, n, of coins, of various
denominations, are placed in a line.
Two players, who we will call Alice and Bob, take turns removing
one of the coins from either end of the remaining line of coins.
The player who removes a set of coins with larger total value than
the other player wins and gets to keep the money. The loser gets
nothing.
Game goal: get the most.

3535333533333535555555555333533335555555553333333333355555553553333335353335555535333333533555555555555553355555333555553333333333333333333333333

If the value of the first
coin is $4, how would
Alice do?

False Start 1: Greedy Method
A natural greedy strategy is “always choose the
largest-valued available coin.”
But this doesn’t always work:

[5, 10, 25, 10]: Alice chooses 10
[5, 10, 25]: Bob chooses 25
[5, 10]: Alice chooses 10
[5]: Bob chooses 5

Alice’s total value: 20, Bob’s total value: 30. (Bob wins,
Alice loses)

36

False Start 2: Greedy Method
Another greedy strategy is “choose all odds or all
evens, whichever is better.”
Alice can always win with this strategy, but won’t
necessarily get the most money.
Example: [1, 3, 6, 3, 1, 3]
All odds = 1 + 6 + 1 = 8
All evens = 3 + 3 + 3 = 9
Alice’s total value: $9, Bob’s total value: $8.
Alice wins $9, but could have won $10.
How?

37

38

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, l,
m, and so on.
Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems
Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

39

Defining Simple Subproblems
Since Alice and Bob can remove coins from either end
of the line, an appropriate way to define subproblems
is in terms of a range of indices for the coins,
assuming they are initially numbered from 1 to n.
Thus, let us define the following indexed parameter:

40

Subproblem Optimality
Let us assume that the values of the coins are stored
in an array, V, so that coin 1 is of value V[1], coin 2 is
of value V[2], and so on.
Note that, given the line of coins from coin i to coin j,
the choice for Alice at this point is either to take coin i
or coin j and thereby gain a coin of value V[i] or V[j].
Once that choice is made, play turns to Bob, who we
are assuming is playing optimally.

We should assume that Bob will make the choice
among his possibilities that minimizes the total
amount that Alice can get from the coins that
remain.

41

Subproblem Overlap
Alice should choose based on the following:

That is, we have initial conditions, for i=1,2,…,n-1:

And general equation:

4144

Decision Tree in Games:
minimax tree

A

A A A A

B B

M2,7M3,8

M1,8

min{M3,8, M2,7} min{M2,7, M1,6}

M2,7 M1,6

take 1 take 8

take 2 take 8 take 1 take 7

take 3 take 8 take 7 take 7take 2 take 6

11

Example: [1, 3, 6, 3, 1, 3]
M:
i\j 2 3 4 5 6
1 3 ? ?
2 6 ?
3 6 ?
4 3
5 3

M[1,4] = max{
min{M[2,3], M[3,4]}+V[1],
min{M[1,2], M[2,3]}+V[4] }

= max{min{6, 6}+1, min{3,6}+3}
= max{7, 6}
= 7

M[2,5] = max{
min{M[3,4], M[4,5]}+V[2],
min{M[2,3], M[3,4]}+V[5] }

= max{min{6, 3}+3, min{6,6}+1}
= max{6, 7}
= 7

M[3,6] = max{
min{M[4,5], M[5,6]}+V[3],
min{M[3,4], M[4,5]}+V[6] }

= max{min{3, 3}+6, min{6,3}+3}
= max{9, 6}
= 9

44

CoinInALine Algorithm
Algorithm CoinInALine(X,Y):
Input: a list of n coins with values V[i] for i=1 to n, n is even.
Output: For i = 1,…,n-1, j = i+1,...,n, M[i, j] stores the maximal values

that Alice can get from coins i to j.

for i =1 to n-1 do // base case
M[i, i+1] = max(V[i], V[i+1])

for k = 3 to n-1 step 2 do
for i =1 to n-k do

j = i+k // [i, j] has (k+1) coins
v1 = min(M[i+1,j-1], M[i+2, j])
v2 = min(M[i,j-2], M[i+1, j-1])
M[i, j] = max(v1+V[i], v2+V[j])

return array M

4444444444444444444444444444444444

45

Analysis of the Algorithm
We can compute the Mi,j values, then, using
memoization, by starting with the definitions for the
above initial conditions and then computing all the Mi,j’s

i i
+ 1 is 6, and so on.
Since there are O(n) iterations in this algorithm and
each iteration runs in O(n) time, the total time for this
algorithm is O(n2).
To recover the actual game strategy for Alice (and
Bob), we simply need to note for each Mi,j whether
Alice should choose coin i or coin j.

DP Problem Patterns
Telescope Scheduling Problem:

Bi = the max profit from the first i requests: b[1..i]
Bi = max(Bi-1, Bpred(i) + bi)

Longest Common Subsequence Problem:
Li,j = the length of the longest common subsequence of X[1..i]
and Y[1..j].
Li,j = Li-1,j-1+1 if X[i]=Y[j], max(Li-1,j, Li,j-1) otherwise

Coin-in-a-line Problem:
Mi,j = the max possible value of Alice for coins in V[i..j].

47

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, l,
m, and so on.
Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems
Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

48

The 0/1 Knapsack Problem
Given: A set S of n items, with each item i having

wi - a positive weight
bi - a positive value

Goal: Choose items with maximum total value but with
weight at most W.
If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.

In this case, we let T denote the set of items we take

Objective: maximize

Constraint:

Ti
ib

Ti
i Ww

49

Given: A set S of n items, with each item i having
bi - a positive value
wi - a positive weight

Goal: Choose items with maximum total value but with
weight at most W.

Example

Weight:
value:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in
$20 $3 $6 $25 $80

Items:
box of width 9 in

Solution:
• item 5 ($80, 2 in)
• item 3 ($6, 2in)
• item 1 ($20, 4in)

knapsack

50

A 0/1 Knapsack Algorithm,
First Attempt

Sk: Set of items numbered 1 to k.
Define B[k] = best selection from Sk.
Problem: does not have subproblem optimality:

Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of
(value, weight) pairs and total weight W = 20

Best for S4:

Best for S5:

51

A 0/1 Knapsack Algorithm,
Second (Better) Attempt

Sk: Set of items numbered 1 to k.
Define B[k,w] to be the best selection from Sk with
weight at most w
Good news: this does have subproblem optimality.

I.e., the best subset of Sk with weight at most w is
either

the best subset of Sk-1 with weight at most w or
the best subset of Sk-1 with weight at most w wk plus item k

else}],1[],,1[max{
if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

52

0/1 Knapsack Example

n + 1

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT: { 4, 3 }
value = 22 + 18 = 40

else}],1[],,1[max{
if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

B[k,w]

We can use two rows
for all k in B[k,w].

53

0/1 Knapsack Algorithm

Recall the definition of
B[k,w]
Running time: O(nW).
Not a polynomial-time
algorithm since W is not
the size of the input.
This is a pseudo-polynomial
time algorithm.
Only two rows of B[k,w] is
needed: replace B[k, w] by
B[k%2, w] will work.
So the space is O(W).

Algorithm 01Knapsack(S, W):
Input: set S of n items with value bi
and weight wi; maximum weight W
Output: value of best subset of S with
weight at most W
for w 0 to W do B[0, w] 0
for k 1 to n do

B[k, 0] 0
for w 1 to W do

B[k, w] B[k-1, w]
if w wk &&

B[k-1, w wk] bk > B[k, w] then
B[k, w] B[k, w wk] bk

return B[n, W]

else}],1[],,1[max{
if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

54

0/1 Knapsack Algorithm

How to get the actual set of
items?
First call 01Knapsack(S,
W) to get B[k,w].
Then call

01KS(S, B, n, W)
Running time: O(n).

Algorithm 01KS(S, B, k, w):
Input: set S of n items with value bi

and weight wi; maximum weight W
if w wk &&

B[n%2, w wk] bk == B[n%2, w]
01KS(S, B, k-1, w wk)
print(k)

else
01KS(S, B, k-1, w)

else}],1[],,1[max{
if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

DP Problem Patterns
Longest Common Subsequence Problem:

Li,j = the length of the longest common subsequence of X[1..i]
and Y[1..j].
Li,j = Li-1,j-1+1 if X[i]=Y[j], max(Li-1,j, Li,j-1) otherwise

Coin-in-a-line Problem:
Mi,j = the max possible value of Alice for coins in V[i..j].

0-1 Knapsack Problem:
B[k, w] = max value from the first k items under weight limit w.

jjjjjjjjjjj

___ __

else}],1[],,1[max{
if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

56

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, l,
m, and so on.
Subproblem optimality: the global optimum value
can be defined in terms of optimal solutions of
subproblem.
Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

Matrix Multiplication
Review: Matrix Multiplication.

C = A*B
A is d e and B is e f

O(def) time

A C

B

d d

f

e

f

e

i

j

i,j

1

0

],[*],[],[
e

k

jkBkiAjiC

Matrix multiplication
MATRIX-MULTIPLY (A,B)

if columns rows [B]
then error “incompatible dimensions”
else for 1 to rows [A]

for j 1 to columns [B]
C[i, j
for k to columns [A]

C[i, j i, j] +A[i, k]*B[k, j]
return C

Time: O(d·e·f) if A is d e and B is e f.
Divide and Conquer can reduce it slightly.

59

Matrix Chain-Products
Matrix Chain-Product:

Compute A=A0*A1*…*An-1
Ai is di di+1
Problem: How to parenthesize?

Example
B is 3 100
C is 100 5
D is 5 5
(B*C)*D takes 1500 + 75 = 1575 ops
B*(C*D) takes 1500 + 2500 = 4000 ops

60

An Exhaustive Approach
Matrix Chain-Product Alg.:

Try all possible ways to parenthesize
A=A0*A1*…*An-1
Calculate number of ops for each one
Pick the one that is best

Running time:
The number of paranethesizations is equal
to the number of binary trees with n nodes
This is exponential!
It is called the Catalan number, and it is
almost 4n.
This is a terrible algorithm!

61

A Greedy Approach
Idea #1: repeatedly select the product that
uses (up) the most operations.
Counter-example:

A is 10 5
B is 5 10
C is 10 5
D is 5 10
Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops
A*((B*C)*D) takes 250+500+250 = 1000 ops

62

Another Greedy Approach
Idea #2: repeatedly select the product that uses the fewest
operations.
Counter-example:

A is 200 10
B is 10 10
C is 10 100
D is 100 100
Greedy idea #2 gives (A*(B*C))*D which takes
10000+200000+2000000=2,210,000 ops
(A*B)*(C*D) takes 20000+100000+200000=320,000 ops
A*((B*C)*D)) takes 10000+100000+200000=310,000 ops

The greedy approach is not giving us the optimal value.

63

A Recursive Approach
Define subproblems:

Find the best parenthesization of Ai*Ai+1*…*Aj.
Let Ni,j denote the number of operations done by this
subproblem.
The optimal solution for the whole problem is N0,n-1.

Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems

There has to be a final multiplication (root of the expression
tree) for the optimal solution.
Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1).
Then the optimal solution N0,n-1 is the sum of two optimal
subproblems, N0,i and Ni+1,n-1 plus the time for the last
multiplication.
If the global optimum did not have these optimal subproblems,
we could define an even better optimal solution.

64

A Characterizing Equation
The global optimal has to be defined in terms of
optimal subproblems, depending on where the final
multiply is at.
Let us consider all possible places for that final multiply:

Recall that Ai is a di di+1 dimensional matrix.
So, a characterizing equation for Ni,j is the following:

Note that subproblems are not independent -- the
subproblems overlap.

}{min 11,1,, jkijkkijkiji dddNNN
Ni,i = 0

65

A Dynamic Programming
Algorithm

Since subproblems
overlap, we don t
use recursion.
Instead, we
construct optimal
subproblems
bottom-up.

Ni,i s are 0, so start
with them
Then do length
2,3,… subproblems,
and so on.
The running time is
O(n3)

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied
Output: number of operations in an optimal

paranethization of S
for i 0 to n-1 do

Ni,i 0
for b 1 to n-1 do

for i 0 to n-b-1 do
j i+b
Ni,j +infinity
for k i to j-1 do

Ni,j min{Ni,j , Ni,k +Nk+1,j +di dk+1 dj+1}

66

answerN 0 1
0
1

2 …

n-1

…

n-1j

i

A Dynamic Programming
Algorithm Visualization
The bottom-up
construction fills in the
N array by diagonals
Ni,j gets values from
pervious entries in i-th
row and j-th column
Filling in each entry in
the N table takes O(n)
time.
Total run time: O(n3)
Getting actual
parenthesization can be
done by remembering
k for each N entry

}{min 11,1,, jkijkkijkiji dddNNN

0
1

n-1

…
i

15750

0

9375

7875

15125

11875

4375

2625

10500

7125

0
00

575

2500

0

50001000

3500

0

750

A1 A2 A3 A4 A5 A6

m

1000

2500

matrix dimensions: 30, 35, 15, 5, 10, 20, 25
A1 30 x 35
A2 35 x 15
A3 15 x 5
A4 5 x 10
A5 10 x 20
A6 20 x 25

7125
1137520103504375]5,5[]4,2[

7125205351002625]5,4[]3,2[
1300020153525000]5,3[]2,2[

min]5,2[

541

531

521

pppmm
pppmm
pppmm

m

68

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, l,
m, and so on.
Subproblem optimality: the global optimum value
can be defined in terms of optimal solutions of
subproblem.
Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

