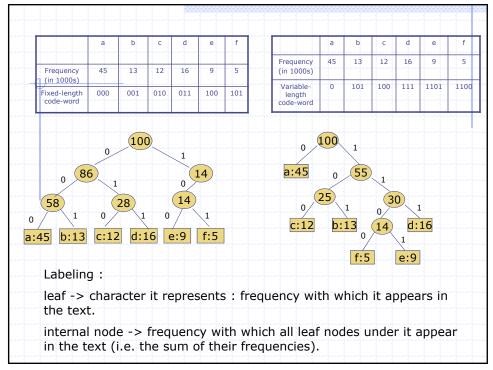
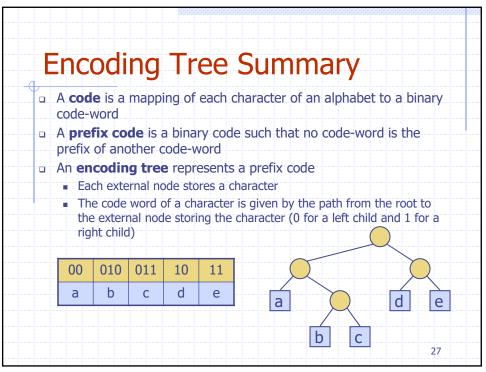
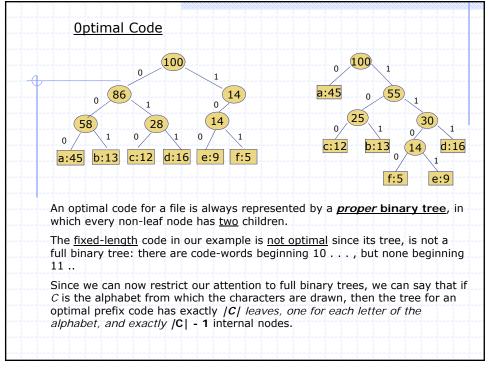


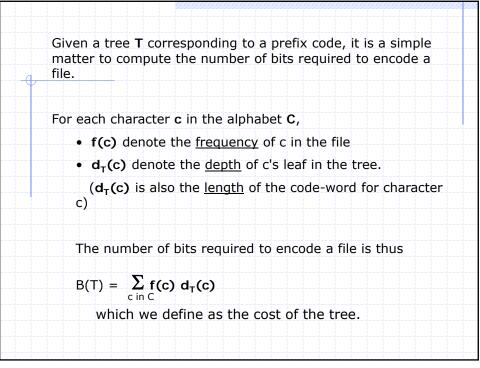
Basic	<u>Idea :</u>
Let also	set of characters in the file be $C = \{c_1, c_2,, c_n\}$ of (c_i) , $1 \le i \le n$, be the frequency of character c_i i i.e., the number of times c_i appears in the file.
source the va a parti	a <u>variable-length</u> code table for encoding symbol (such as a character in a file) whe riable-length code table has been derived i cular way based on the frequency of ence for each possible value of the source l.

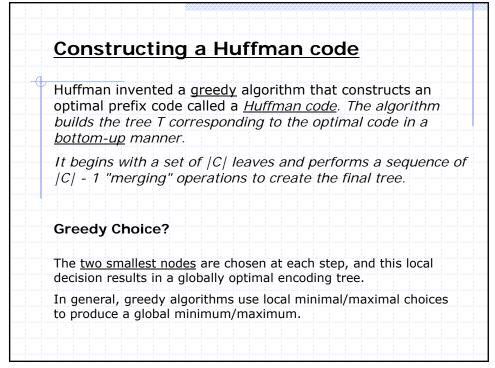
For simplicity characters in indicated belo	the file					
We represent character.		e using	a <u>uniq</u>	ue bina	ary str	ing fo
		h	с	d	e	f
	а	, J		1 1 1		
Frequency (in 100s)	a 45	13	12	16	9	5

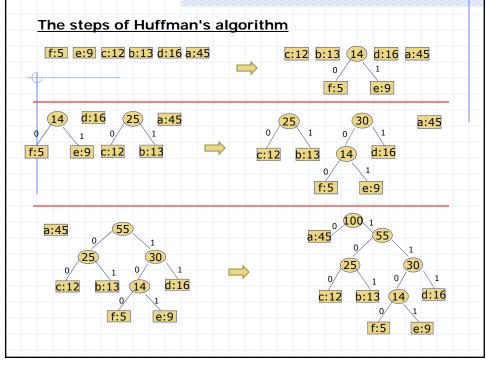

using <u>variable-le</u> des.	ength (codes i	instead	d of fi	vod lov	م حاليا م
ues.			moteu		xeu-iei	ngth
oo : Civing froguo	nt char	actore	chort	codo	worde	and
				coue-	worus,	anu
. The length of the	encod	ed cha	aracter	is inv	verselv	
				1 1 1	0.00.7	
	-			d		f
equency (in 1000s)		-		u 16	9	5
d-length code-word	000	001	010	011	100	101
			0-0			
	requent character . The length of the <u>oportional</u> to that o equency (in 1000s)	requent characters long of . The length of the encod oportional to that charact	requent characters long code-w . The length of the encoded characteris free portional to that characteris free a b equency (in 1000s) 45 13	requent characters long code-words. The length of the encoded character <u>oportional</u> to that character's frequence a <u>b</u> c equency (in 1000s) 45 13 12	requent characters long code-words. The length of the encoded character is inverse opportional to that character's frequency. a b c d equency (in 1000s) 45 13 12 16	. The length of the encoded character is <u>inversely</u> oportional to that character's frequency.

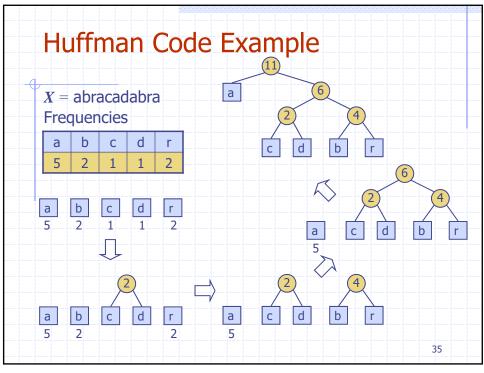

Codes in whic		de-woi	rd is als	so a <u>pr</u>	<u>efix</u> of	some
other code-wo	ora.					
("prefix-free code	s" would	have be	en a mo	re appro	priate na	ame)
Variable-length code-word	0	101	100	111	1101	1100
it is very easy	to enco	ode an	d deco	de usin	ig prefi	x codes.
No Ambiguity	y !!					
ie /						
it is possible to						
	al data	compr	ression	achiev	able by	/ a

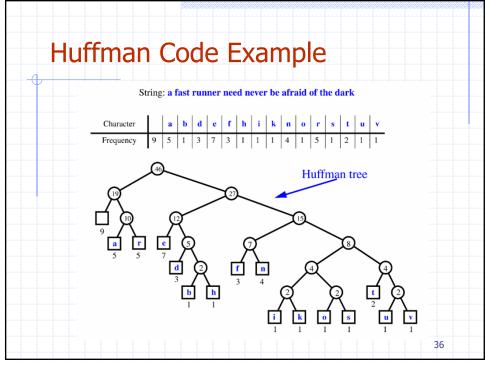

Example:						
	а	b	c	d	e	f
Variable-length code-word	0	101	100	111	1101	1100
f	а	с	e	2		
Encoded as 11	00 0	1	.00 1	L101 =	11000	1001101
To decode, we hav since they are <u>no l</u> since, no codes sh input string from le we can print the co	<u>onger a</u> are a p eft to ri	<u>all the s</u> refix. Tl ght, an	<u>ame ler</u> his mea d as soo	ngth. Bu ns we r on as w	it this is leed onl e recogr	easy, y scan th nize a coo


Evampla						
Example:						
To see why the <u>no-</u>	<u>common</u>	prefix pr	operty is	essentia	al, suppo	se that
encoded "e" with th	ie shorte	er code "1	.10"			
	а	b	с	d	е	f
Variable-length code-word	0	101	100	111	1101	1100
Variable-length code-word	0	101	100	111	110	1100
When we try to de	ecode "11 = "f"	1000100: .00"; we		t tell whe	ether	

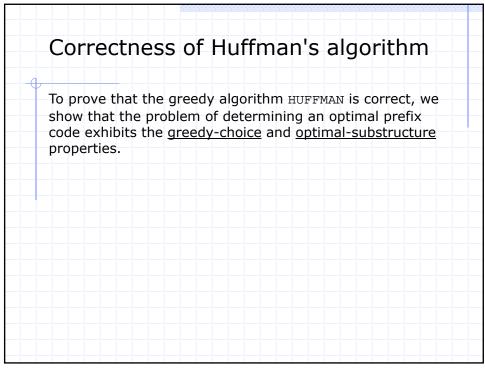

	resentation:
The H	uffman algorithm is represented as:
• t	inary tree
• e	ach edge represents either 0 or 1
	0 means "go to the left child"
	• 1 means "go to the right child."
	ach leaf corresponds to the sequence of 0s and 1s versed from the root to reach it, i.e. a particular de.
and de	no prefix is shared, all legal codes are at the leaves, ecoding a string means following edges, according to quence of 0s and 1s in the string, until a leaf is ed.

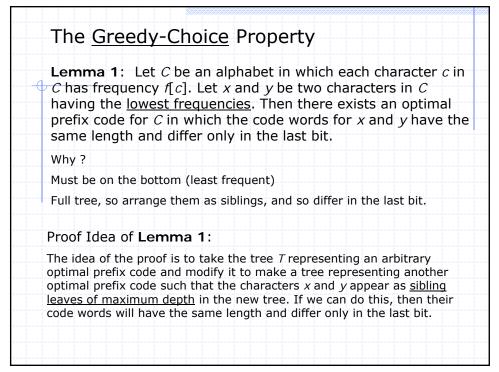


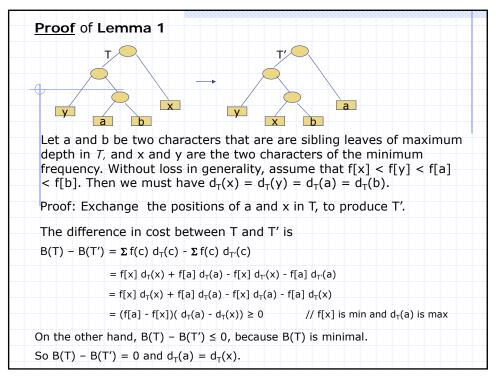


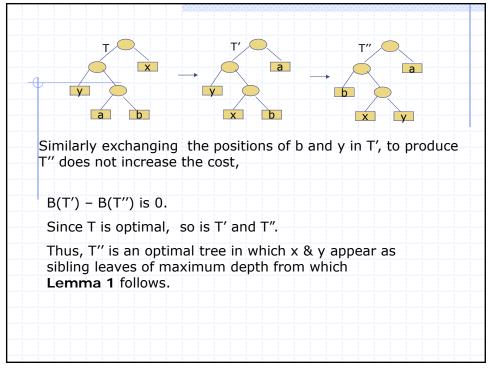

1 n	← <i> C/</i>
2 Q	BUILD-MIN-HEAP(C) // using frequency f[c] for c in C
3 for	<i>i</i> ← 1 to <i>n</i> - 1
4 (do ALLOCATE-NODE(z) // create a new node z
5	$left[z] \leftarrow x \leftarrow EXTRACT-MIN(Q)$
6	$right[z] \leftarrow y \leftarrow EXTRACT-MIN(Q)$
7	$f[z] \leftarrow f[x] + f[y] // \text{ frequency of } z$
8	INSERT(<i>Q</i> , <i>z</i>)
9 ret	urn EXTRACT-MIN(<i>Q</i>)
define	set of <i>n</i> characters: each character <i>c</i> in <i>C</i> is an object with a ed frequency $f[c]$.

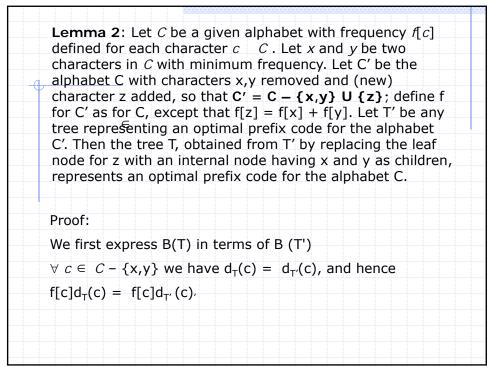
$1 n \leftarrow C $	
$2 Q \leftarrow \text{BUILD-MIN-HEAP}(C)$	// O(n)
3 for <i>i</i> ← 1 to <i>n</i> - 1	// n *
4 do ALLOCATE-NODE(z)	// O(1)
5 $left[z] \leftarrow x \leftarrow EXTRACT-MIN(Q)$	// O(log n
$6 right[z] \leftarrow y \leftarrow EXTRACT-MIN(Q)$	// O(log n
7 $f[z] \leftarrow f[x] + f[y] // \text{ frequency of } z$	// O(1)
8 INSERT(<i>Q</i> , <i>z</i>)	// O(log n)
9 return EXTRACT-MIN(<i>Q</i>)	// O(1)
<i>C</i> is a set of <i>n</i> characters: each character <i>c</i> in <i>C</i> is defined frequency $f[c]$.	an object with a
A <u>min-priority queue</u> Q , keyed on f , is used to iden <u>frequent</u> objects to merge together and produce z character with frequency $f[z] = f[x]+f[y]$. For the internal node with children x and y.	. For Q, z is a new

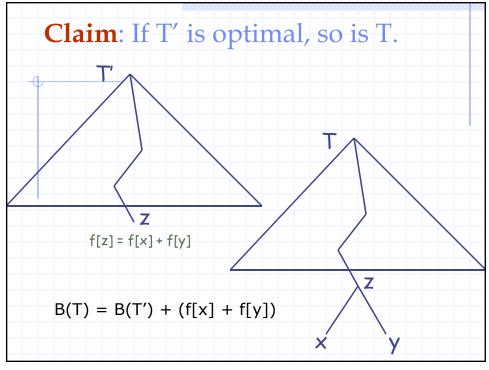

Running	Time Analysis
Assumes that	Q is implemented as a <u>binary min-heap</u> .
line 2 can be	C of <i>n</i> characters, the initialization of Q in performed in $O(n)$ time using the EAP procedure.
times. Each h	top in lines 3-8 is executed exactly $n - 1$ leap operation requires time $O(\log n)$. cributes = $(n - 1) * O(\log n)$
	al running time of HUFFMAN on a set of $n = O(n) + O(nlog n)$
	O(n log n)

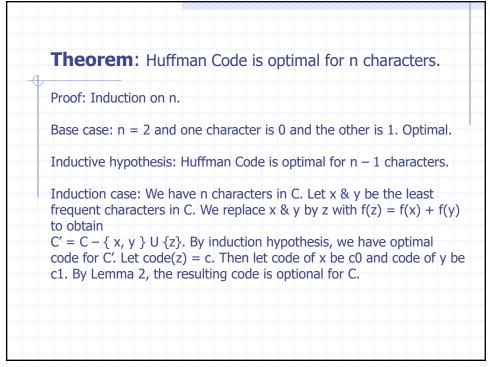


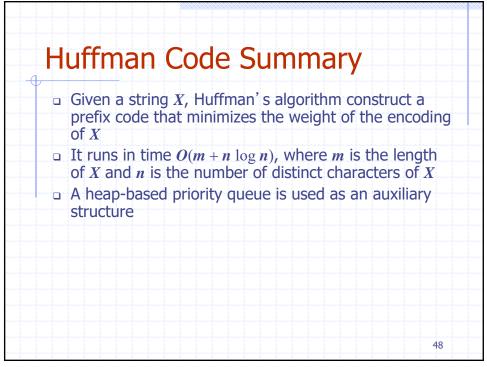


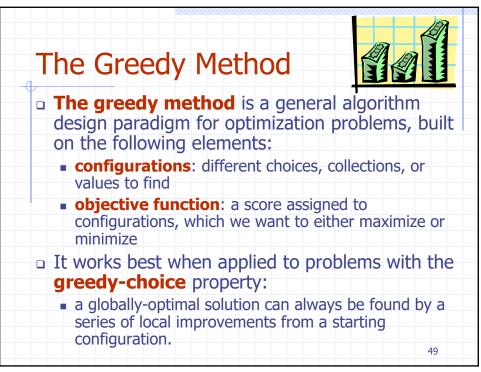

For simplici characters i indicated be	n the							
We represe character.	nt the	e file	using	a <u>uni</u>	<u>que t</u>	oinary	<u>strin</u>	<u>ig</u> for
	а	b	с	d	е	f	g	h
Frequency (in 100s)	35	13	12	16	9	5	5	5
	- Januar Januar	far far						


Possib	le Quiz Question:
new list O(A +	o sorted lists A and B, merge(A, B) will return a consisting of elements from A and B with cost B), where X is the length of X, i.e., the of elements in list X.
which m merge(A , L _n }, a 2. Thus,	esign an efficient algorithm (as fast as you can) erge n sorted lists into a single list by calling , B), where the sizes of these n lists S ={L ₁ , L ₂ , are as follows: for $1 \le i < n$, $ L_i = 2^i$, and $ L_n =$ the total number of elements in these n lists is analyze the complexity of your algorithm in n.









Since $d_T(x)$	$d_{T}(y) = d_{T'}(z) + 1$, we ha	ve
$f[x]d_T(x)$	$f[y]d_T(y) = (f[x] + f[y]) (d$	$f_{T'}(z) + 1) = f(z)d_{T'}(z) + (f[x] + f[y])$
Or f[x]d _T (x) + f[y]d _T (y) - f(z)d _{T'} (z) = (f	[x] + f[y])
From whice	h we conclude that	
B(T) = B(T') + (f[x] + f[y]) or I	B(T') = B(T) - (f[x] - f[y])
Proof of C	laim by contradiction	
	hat T does not represent an o e exists a tree Opt such that l	
be the tre		 Opt has x & y as siblings. Let T" at of x & y replaced by a leaf z with
Then, B(") = B(Opt) - (f[x] - f[y])	
	< B(T) - (f[x] - f[y]) = B(T')	(assume B(Opt) < B(T))
	e for C'. Thus, T must represe	ion that T' represents an optimal ent an optimal prefix code for the

	e main disadvantage of Huffman's method is that it akes <u>two passes</u> over the data:
	• one pass to collect <u>frequency</u> counts of the letters in the message, followed by the <u>construction</u> of a Huffman tree and <u>transmission</u> of the tree to the receiver; and
	• a second pass to <u>encode</u> and transmit the letters themselves, based on the static tree structure.
an	is causes <u>delay</u> when used for network communication, d in file compression applications the <u>extra disk</u> cesses can slow down the algorithm.
We	need one-pass methods, in which letters are encoded "on the fly

