A Lower Bound for Worst Case

Theorem: Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

Proof:
- Suffices to determine the height of a decision tree.
- The number of leaves is at least $n!$ (# outputs)
- The number of internal nodes $\geq n! - 1$
- The height is at least $\log (n! - 1) = \Omega(n \lg n)$
Can we do better?

- Linear sorting algorithms
 - Bucket Sort
 - Counting Sort (special case of Bucket Sort)
 - Radix Sort

- Make certain assumptions about the data

- Linear sorts are NOT “comparison sorts”

Application: Constructing Histograms

- One common computation in data visualization and analysis is computing a **histogram**.

- For example, n students might be assigned integer scores in some range, such as 0 to 100, and are then placed into ranges or “buckets” based on these scores.

A histogram of scores from a recent Algorithms course.
Application: An Algorithm for Constructing Histograms

- When we think about the algorithmic issues in constructing a histogram of n scores, it is easy to see that this is a type of sorting problem.
- But it is not the most general kind of sorting problem, since the keys being used to sort are simply integers in a given range.
- So a natural question to ask is whether we can sort these values faster than with a general comparison-based sorting algorithm.
- The answer is “yes.” In fact, we can sort them in $O(n)$ time.

Bucket-Sort

- Let S be a sequence of n (key, element) items with keys in the range $[0, r - 1]$
- Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets)
 - **Phase 1**: Empty sequence S by moving each entry (k, o) into its bucket $B[k]$
 - **Phase 2**: For $i = 0, \ldots, r - 1$, move the entries of bucket $B[i]$ to the end of sequence S
- Analysis:
 - Phase 1 takes $O(n)$ time
 - Phase 2 takes $O(n + r)$ time
 - Bucket-sort takes $O(n + r)$ time

```python
Algorithm bucketSort(S):
Input: Sequence S of entries with integer keys in the range [0, r - 1]
Output: Sequence S sorted in nondecreasing order of the keys
let B be an array of N sequences, each of which is initially empty
for each entry e in S do
  k = the key of e
  remove e from S
  insert e at the end of bucket B[k]
for i = 0 to r-1 do
  for each entry e in B[i] do
    remove e from B[i]
    insert e at the end of S
```
Example

- Key range \([0, 9]\) \((r = 10)\)

```
7, d → 1, c → 3, a → 7, g → 3, b → 7, e
```

Phase 1

```
B
\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\emptyset & \emptyset \\
\end{array}
\]
```

Phase 2

```
1, c → 3, a → 3, b → 7, d → 7, g → 7, e
```

Array-based Implementation: Counting Sort

- Assumptions:
 - \(n\) integers which are in the range \([0 \ldots r-1]\)
 - \(r\) has the same growth rate as \(n\), that is, \(r = O(n)\)

- Idea:
 - For each element \(x\), find the number of occurrences of \(x\) and store it in the counter
 - Place \(x\) into its correct position in the output array using the counter.
Step 1

Find the number of times \(A[i]\) appears in \(A\) (i.e., frequencies)

Example:

- **Input Array A:**

 \[
 \begin{array}{ccccccc}
 3 & 6 & 4 & 1 & 3 & 4 & 4 \\
 \end{array}
 \]

- **C[i] = number of times element i appears in A**

 \[
 \begin{array}{ccccccc}
 1 & 2 & 3 & 4 & 5 & 6 \\
 \end{array}
 \]

 \[
 \begin{array}{ccccccc}
 0 & 0 & 0 & 0 & 0 & 0 \\
 \end{array}
 \]

 \[
 \begin{array}{ccccccc}
 1 & 2 & 3 & 4 & 5 & 6 \\
 \end{array}
 \]

 \[
 \begin{array}{ccccccc}
 0 & 0 & 1 & 0 & 0 & 0 \\
 \end{array}
 \]

 \[
 \begin{array}{ccccccc}
 1 & 2 & 3 & 4 & 5 & 6 \\
 \end{array}
 \]

 \[
 \begin{array}{ccccccc}
 0 & 0 & 1 & 0 & 0 & 1 \\
 \end{array}
 \]

 \[
 \begin{array}{ccccccc}
 1 & 2 & 3 & 4 & 5 & 6 \\
 \end{array}
 \]

 \[
 \begin{array}{ccccccc}
 0 & 0 & 1 & 1 & 0 & 1 \\
 \end{array}
 \]

 \[
 \begin{array}{ccccccc}
 1 & 2 & 3 & 4 & 5 & 6 \\
 \end{array}
 \]

 \[
 \begin{array}{ccccccc}
 2 & 0 & 2 & 3 & 0 & 1 \\
 \end{array}
 \]
Properties and Extensions

- **Key-type Property**
 - The keys are used as indices into an array and cannot be arbitrary objects
 - No external comparator

- **Stable Sort Property**
 - The relative order of any two items with the same key is preserved after the execution of the algorithm

Extensions

- Integer keys in the range \([a, b]\)
 - Put entry \((k, o)\) into bucket \(B[k - a]\)
- Float numbers round to integers
- String keys from a set \(D\) of possible strings, where \(D\) has constant size (e.g., names of the 50 U.S. states)
 - Sort \(D\) and compute the rank \(r(k)\) of each string \(k\) of \(D\) in the sorted sequence
 - Put entry \((k, o)\) into bucket \(B[r(k)]\)

Example - Bucket Sort \(R = [0..0.99]\)

Distribute Into buckets
Example - Bucket Sort

Sort within each bucket: because the mapping from keys to bucket is many-to-one.

Concatenate the lists from 0 to k - 1 together, in order.
Analysis of Extended Bucket Sort

Alg.: BUCKET-SORT(A, n)

\[\begin{align*}
&\text{for } i \gets 1 \text{ to } n \\
&\quad \text{do insert } A[i] \text{ into list } B\lfloor \lfloor nA[i]\rfloor \rfloor \\
&\text{for } i \gets 0 \text{ to } r-1 \\
&\quad \text{do sort list } B[i] \text{ with merge sort} \\
&\text{concatenate lists } B[0], B[1], \ldots, B[r-1] \text{ together in order} \\
&\text{return the concatenated lists}
\end{align*}\]

\[\begin{align*}
O(n) & \quad (\text{if } r=\Theta(n)) \\
O(n) & \quad (average \ case) \\
k O(n/r \ log(n/r)) & = O(nlog(n/r)) \\
O(n+r) & \quad (worst \ case)
\end{align*}\]

Note: If the mapping from keys to buckets is 1-to-1, there is no need to sort each bucket, and the time is the worst case, not the average case.

Lexicographic Order

- A \(d\)-tuple is a sequence of \(d\) keys \((k_1, k_2, \ldots, k_d)\), where key \(k_i\) is said to be the \(i\)-th dimension of the tuple
- Example:
 - The Cartesian coordinates of a point in 3D space are a 3-tuple
 - The lexicographic order of two \(d\)-tuples is recursively defined as follows
 \[\begin{align*}
 (x_1, x_2, \ldots, x_d) & \preceq_{\text{lex}} (y_1, y_2, \ldots, y_d) \\
 & \iff \\
 & x_1 < y_1 \lor \ x_1 = y_1 \land (x_2, \ldots, x_d) \preceq_{\text{lex}} (y_2, \ldots, y_d)
 \end{align*}\]
 I.e., the tuples are compared by the first dimension, then by the second dimension, etc.
Lexicographic-Sort

- Let \(C_i \) be the comparator that compares two tuples by their \(i \)-th dimension
- Let \(\text{stableSort}(S, C) \) be a stable sorting algorithm that uses comparator \(C \)
- Lexicographic-sort sorts a sequence of \(d \)-tuples in lexicographic order by executing \(d \) times algorithm \(\text{stableSort} \), one per dimension
- Lexicographic-sort runs in \(O(dT(n)) \) time, where \(T(n) \) is the running time of \(\text{stableSort} \)

Algorithm \(\text{lexicographicSort}(S) \)

Input: sequence \(S \) of \(d \)-tuples
Output: sequence \(S \) sorted in lexicographic order

for \(i \leftarrow d \) downto 1
 \(\text{stableSort}(S, C_i) \)
 // \(C_i \) compares \(i \)-th dimension

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)
(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)
(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

Correctness of Alg. \(\text{lexicographicSort}(S) \)

Theorem: Alg. \(\text{lexicographicSort}(S) \) sorts \(S \) by lexicographic order.

Proof: Induction on \(d \).
- Base case: \(d=1 \), \(\text{stableSort}(S, C_1) \) will do the job.
- Induction hypothesis: Theorem is true for \(d' < d \).
- Inductive case:
 - Suppose \((x_1, x_2, \ldots, x_d) \) \(\leq_{\text{lex}} (y_1, y_2, \ldots, y_d) \).
 - If \(x_1 < y_1 \), then the last round places \((x_1, x_2, \ldots, x_d) \) before \((y_1, y_2, \ldots, y_d) \).
 - If \(x_1 = y_1 \), then \((x_2, \ldots, x_d) \) \(<_{\text{lex}} (y_2, \ldots, y_d) \).
 - By induction hypothesis, the previous rounds will place \((x_2, \ldots, x_d) \) before \((y_2, \ldots, y_d) \). And we use a stable sort, so \((x_1, x_2, \ldots, x_d) \) goes before \((y_1, y_2, \ldots, y_d) \).
Radix-Sort

- Radix-sort is a special case of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension.
- Radix-sort is applicable to tuples where the keys in each dimension i are integers in the range $[0, r - 1]$.
- Radix-sort runs in time $O(d(n + r))$.
- If d is constant and r is $O(n)$, then this is $O(n)$.

Algorithm $\text{radixSort}(S, N)$

Input sequence S of d-tuples such that $(0, \ldots, 0) \leq (x_1, \ldots, x_d)$ and $(x_1, \ldots, x_d) \leq (N - 1, \ldots, N - 1)$ for each tuple (x_1, \ldots, x_d) in S.

Output sequence S sorted in lexicographic order.

for $i \leftarrow d$ downto 1

$\text{bucketSort}(S, N)$

Radix Sort Example

- Represents keys as d-digit numbers in some base-r

 $\text{key} = x_1x_2\ldots x_d \quad \text{where } 0 \leq x_i \leq r-1$

- Example: $\text{key}=15$

 $\text{key}_{10} = 15, \; d=2, \; r=10 \quad \text{where } 0 \leq x_i \leq 9$
Radix Sort Example

- Sorting looks at one column at a time
 - For a d digit number, sort the least significant digit first
 - Continue sorting on the next least significant digit, until all digits have been sorted
 - Requires only d passes through the list

```
RADIX-SORT
Alg.: RADIX-SORT(A, d)
for $i \leftarrow 1$ to $d$
do use a stable bucket sort of array $A$ on digit $i$
```

(stable sort: preserves order of identical elements)
Analysis of Radix Sort

Given \(n \) numbers of \(d \) digits each, where each digit may take up to \(k \) possible values, RADIX-SORT correctly sorts the numbers in \(O(d(n+k)) \).

- One pass of sorting per digit takes \(O(n+k) \) assuming that we use **bucket sort**.
- There are \(d \) passes (for each digit).

Summary: Beating the lower bound

- We can beat the lower bound if we don’t base our sort on comparisons:
 - **Counting sort** for keys in [0..k], \(k=O(n) \)
 - **Bucket sort** for keys which can map to small range of integers (uniformly distributed)
 - **Radix sort** for keys with a fixed number of “digits”
Finding Medians

- A common data analysis tool is to compute a median, that is, a value taken from among \(n \) values such that there are at most \(n/2 \) values larger than this one and at most \(n/2 \) elements smaller.
- Of course, such a number can be found easily if we were to sort the scores, but it would be ideal if we could find medians in \(O(n) \) time without having to perform a sorting operation.

Median Selection: Finding the Median and the \(k \)th Smallest Element

- The median of a sequence of \(n \) sorted numbers \(A[1...n] \) is the “middle” element.
- If \(n \) is odd, then the middle element is the \((n+1)/2 \)th element in the sequence.
- If \(n \) is even, then there are two middle elements occurring at positions \(n/2 \) and \(n/2+1 \). In this case, we will choose the \(n/2 \)th smallest element.
- Thus, in both cases, the median is the \(\lceil n/2 \rceil \)th smallest element.
- The \(k \)th smallest element is a general case.
The Selection Problem

- Given an integer \(k \) and \(n \) elements \(x_1, x_2, \ldots, x_n \), taken from a total order, find the \(k \)-th smallest element in this set.
- Of course, we can sort the set in \(O(n \log n) \) time and then index the \(k \)-th element.
- We want to solve the selection problem faster.

Quick-Select

- Quick-select is a randomized selection algorithm based on the prune-and-search paradigm:
 - Prune: pick a random element \(x \) (called pivot) and partition \(S \) into
 - \(L \): elements less than \(x \)
 - \(E \): elements equal \(x \)
 - \(G \): elements greater than \(x \)
 - Search: depending on \(k \), either answer is in \(E \), or we need to recur in either \(L \) or \(G \)

\[
\begin{align*}
|L| & \leq k \\
|L| & > |L| + |E| \\
|L| & < k \leq |L| + |E| \\
\end{align*}
\]

(done)
Pseudo-code

Algorithm quickSelect(S, k):
 Input: Sequence S of n comparable elements, and an integer k ∈ [1, n]
 Output: The kth smallest element of S
 if n = 1 then
 return the (first) element of S
 pick a random element x of S
 remove all the elements from S and put them into three sequences:
 • L, storing the elements in S less than x
 • E, storing the elements in S equal to x
 • G, storing the elements in S greater than x.
 if k ≤ |L| then
 quickSelect(L, k)
 else if k ≤ |L| + |E| then
 return x // each element in E is equal to x
 else
 quickSelect(G, k − |L| − |E|)

Note that partitioning takes \(O(n)\) time.

Quick-Select Visualization

An execution of quick-select can be visualized by a recursion path:
- Each node represents a recursive call of quick-select, and stores k and the remaining sequence.

\[
\begin{align*}
 k &= 5, S = (7 \quad 4 \quad 9 \quad 3 \quad 2 \quad 6 \quad 5 \quad 1 \quad 8) \\
 k &= 2, S = (7 \quad 4 \quad 9 \quad 6 \quad 5 \quad 8) \\
 k &= 2, S = (7 \quad 4 \quad 6 \quad 5) \\
 k &= 1, S = (7 \quad 6 \quad 5) \\
 5
\end{align*}
\]
Expected Running Time

- Consider a recursive call of quick-select on a sequence of size s:
 - **Good call**: the sizes of L and G are each less than $\frac{3s}{4}$
 - **Bad call**: one of L and G has size greater than $\frac{3s}{4}$

 ![Diagram of Good and Bad Calls]

- A call is **good** with probability $\frac{1}{2}$
 - $\frac{1}{2}$ of the possible pivots cause good calls:

 ![Diagram of Good and Bad Pivots]

Expected Running Time, Part 2

- **Probabilistic Fact**: The expected number of coin tosses required in order to get k heads is $2k$
- For a node of depth i, we expect
 - $\frac{i}{2}$ ancestors are good calls
 - The size of the input sequence for the current call is at most $(\frac{3}{4})^i s$

 Therefore, we have
 - For a node of depth $2\log_{4/3} n$, the expected input size is one
 - The expected height of the quick-sort tree is $O(\log n)$

- The amount or work done at the nodes of the same depth is $O((\frac{3}{4})^i n)$
- Thus, the expected running time of quick-sort is $O(n)$
Expected Running Time

- Let $T(n)$ denote the expected running time of quick-select.
- By Fact #2,
 - $T(n) \leq T(3n/4) + bn*(\text{expected # of calls before a good call})$
- By Fact #1,
 - $T(n) \leq T(3n/4) + 2bn$
- That is, $T(n)$ is a geometric series:
 - $T(n) \leq 2bn + 2b(3/4)n + 2b(3/4)^2n + 2b(3/4)^3n + ...$
- So $T(n)$ is $O(n)$.
- We can solve the selection problem in $O(n)$ expected time.

Linear Time Selection Algorithm

- Also called Median Finding Algorithm.
- Find k^{th} smallest element in $O(n)$ time in worst case.
- Uses Divide and Conquer strategy.
- Uses elimination in order to cut down the running time substantially.
If we select an element m among A, then A can be divided into 3 parts:

- $L = \{ a \mid a \text{ is in } A, a < m \}$
- $E = \{ a \mid a \text{ is in } A, a = m \}$
- $G = \{ a \mid a \text{ is in } A, a > m \}$

According to the number elements in L, E, G, there are following three cases. In each case, where is the k-th smallest element?

- Case 1: $|L| \geq k$ The k-th element is in L
- Case 2: $|L| + |E| \geq k > |L|$ The k-th element is in E
- Case 3: $|L| + |E| < k$ The k-th element is in G

Deterministic Selection

- We can do selection in $O(n)$ worst-case time.
- Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:
 - Divide S into $n/5$ groups of 5 each
 - Find a median in each group
 - Recursively find the median of the “baby” medians.
Steps to solve the problem

- Step 1: If n is small, for example $n < 45$, just sort and return the k^{th} smallest number in constant time i.e; $O(1)$ time.
- Step 2: Group the given numbers in subsets of 5 in $O(n)$ time.
- Step 3: Sort each of the group in $O(n)$ time. Find median of each group.

Example:

- Given a set
 (.........2,6,8,19,24,54,5,87,9,10,44,32,21,13,3,4, 18,26,36,30,25,39,47,56,71,91,61,44,28.........)
 having n elements.
Arrange the numbers in groups of five

Sort each group of 5 from top to bottom

Each group of 5 is sorted
Step 4: Find median of n/5 group medians recursively

There are $s = n/5$ groups, there are $s/2$ groups on the left of m and $s/2$ groups on the right of m.

So there are $3/2s - 1 = 3n/10 - 1$ numbers less than m and $3n/10 - 1$ numbers greater than m.

Find m, the median of medians
Step 5: Find the sets L, E, and G

- Compare each $(n-1)$ elements in the top-right and bottom-left regions with the median m and find three sets L, E, and G such that every element in L is smaller than m, every element in E is equal to m, and every element in G is greater than m.

\[3n/10 - |E| \leq |L| \leq 7n/10 - |E| \]
\[(|L| \text{ is the size or cardinality of } L) \]

\[3n/10 - |E| \leq |G| \leq 7n/10 - |E| \]

Min size for L

```
1 2 2 2 2 3 3 3 3 3
4 4 4 4 4 4 5 5 5 5
```

Min size for G

```
1 1 1 1 1 1 1 1 1 1
```

Pseudo code: Finding the k-th Smallest Element

- **Input**: An array $A[1...n]$ of n elements and an integer k, $1 \leq k \leq n$;
- **Output**: The kth smallest element in A;
- 1. $select(A, n, k)$;
Pseudo code: Finding the k-th Smallest Element

1. $select(A, n, k)$
2. if $n < 45$ then sort A and return $(A[k])$;
3. Let $q = \lceil n/5 \rceil$. Divide A into q groups of 5 elements each.
 If 5 does not divide n, then add max element;
4. Sort each of the q groups individually and extract its median.
 Let the set of medians be M.
5. $m \leftarrow select(M, q, \lceil q/2 \rceil)$;
6. Partition A into three arrays:
 $L = \{a \mid a < m\}$, $E = \{a \mid a = m\}$, $G = \{a \mid a > m\}$;
7. case
 - $|L| \geq k$: return $select(L, |L|, k)$;
 - $|L|+|E| \geq k$: return m;
 - $|L|+|E| < k$: return $select(G, |G|, k-|L|-|E|)$;
8. end case;

Complexity: Finding the k-th Smallest Element (Bound time: $T(n)$)

1. $select(A, n, k)$
2. if $n < 45$ then sort A and return $(A[k])$; $O(1)$
3. Let $q = \lceil n/5 \rceil$. Divide A into q groups of 5 elements each. $O(n)$
 If 5 does not divide n, then add max element;
4. Sort each of the q groups individually and extract its median. $O(n)$
 Let the set of medians be M.
5. $m \leftarrow select(M, q, \lceil q/2 \rceil)$; $T(n/5)$
6. Partition A into three arrays:
 $L = \{a \mid a < m\}$, $E = \{a \mid a = m\}$, $G = \{a \mid a > m\}$; $O(n)$
7. case
 - $|L| \geq k$: return $select(L, |L|, k)$; $T(7n/10)$
 - $|L|+|E| \geq k$: return m; $O(1)$
 - $|L|+|E| < k$: return $select(G, |G|, k-|L|-|E|)$; $T(7n/10)$
8. end case;

Summary: $T(n) = T(n/5) + T(7n/10) + a*n$
Analysis: Finding the k-th Smallest Element

- What is the best case time complexity of this algorithm?
- $O(n)$ when $|L| < k \leq |L| + |E|

$T(n)$: the worst case time complexity of $\text{select}(A, n, k)$

$$T(n) = T(n/5) + T(7n/10) + a*n$$

- The k-th smallest element in a set of n elements drawn from a linearly ordered set can be found in $\Theta(n)$ time.

Recursive formula

$$T(n) = T(n/5) + T(7n/10) + a*n$$

We will solve this equation in order to get the complexity.

We guess that $T(n) \leq Cn$ for a constant, and then by induction on n.

The base case when $n < 45$ is trivial.

$$T(n) = T(n/5) + T(7n/10) + a*n$$

$$\leq C*n/5 + C*7*n/10 + a*n \quad \text{(by induction hypothesis)}$$

$$= ((2C + 7C)/10 + a)n$$

$$= (9C/10 + a)n$$

$$\leq Cn \quad \text{if} \quad C \geq 9C/10 + a, \text{ or } C/10 \geq a, \text{ or } C \geq 10a$$

So we let $C = 10a$.

Then $T(n) \leq Cn$.

So $T(n) = O(n)$.
Why group of 5??

- If we divide elements into groups of 3 then we will have
 \[T(n) = a \cdot n + T(n/3) + T(2n/3) \]
 so \(T(n) \) cannot be \(O(n) \)....

- If we divide elements into groups of more than 5, finding the median of each group will be more, so grouping elements in to 5 is the optimal situation.