
Lists and Iterators 10/8/2019

1

1

Merge Sort &
Quick Sort

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

2

Divide-and-Conquer
 Divide-and conquer is a

general algorithm design
paradigm:
 Divide: divide the input data

S in two disjoint subsets S1
and S2

 Conquer:
 Recur: solve the

subproblems associated
with S1 and S2

 Combine: make the
solutions for S1 and S2
into a solution for S

 The base case for the
recursion are subproblems of
size 0 or 1

1

2

Lists and Iterators 10/8/2019

2

Merge Sort
 Classical example of divide-and-conquer technique
 Problem: Given n elements, sort elements into non-

decreasing order
 Divide-and-Conquer:

 If n=1 terminate (every one-element list is already
sorted)

 If n>1, partition elements into two or more sub-
collections; sort each; combine into a single sorted
list

 How do we partition?

Partitioning - Choice 1
 First n-1 elements into set A, last element into set B
 Sort A using this partitioning scheme recursively

 B already sorted
 Combine A and B using method Insert() (= insertion

into sorted array)
 Leads to recursive version of InsertionSort()

 Number of comparisons: O(n2)
 Best case = n-1

Worst case =
2

)1(

2






nn
ic

n

i

3

4

Lists and Iterators 10/8/2019

3

Partitioning - Choice 2
 Pick the element with largest key in B, remaining

elements in A
 Sort A recursively; B is already sorted
 To combine sorted A and B, append B to sorted A

 Use Max() to find largest element  recursive
SelectionSort()

 Use bubbling process to find and move largest
element to right-most position  recursive
BubbleSort()

 Total cost: O(n2)

Partitioning - Choice 3
 Let’s try to achieve balanced partitioning – that’s

typical for divide-and-conquer.
 A gets n/2 elements, B gets the rest half
 Sort A and B recursively
 Combine sorted A and B using a process called merge,

which combines two sorted lists into one
 How? We will see soon

5

6

Lists and Iterators 10/8/2019

4

7

Merge-Sort
 Merge-sort is a sorting algorithm based on the divide-and-conquer

paradigm
 Like heap-sort

 It has O(n log n) running time
 Unlike heap-sort

 It usually needs extra space in the merging process
 It accesses data in a sequential manner (suitable to sort data on a disk)

Divide part Conquer part

Merging
 The key to Merge Sort is merging two sorted lists into

one, such that if you have two sorted lists X =
(x1x2…xm) and Y= (y1y2…yn), the resulting list is
Z = (z1z2…zm+n)

 Example:
L1 = { 3 8 9 } L2 = { 1 5 7 }
merge(L1, L2) = { 1 3 5 7 8 9 }

7

8

Lists and Iterators 10/8/2019

5

Merging

3 10 23 54 1 5 25 75X: Y:

Result:

Merging (cont.)

3 10 23 54 5 25 75

1

X: Y:

Result:

9

10

Lists and Iterators 10/8/2019

6

Merging (cont.)

10 23 54 5 25 75

1 3

X: Y:

Result:

Merging (cont.)

10 23 54 25 75

1 3 5

X: Y:

Result:

11

12

Lists and Iterators 10/8/2019

7

Merging (cont.)

23 54 25 75

1 3 5 10

X: Y:

Result:

Merging (cont.)

54 25 75

1 3 5 10 23

X: Y:

Result:

13

14

Lists and Iterators 10/8/2019

8

Merging (cont.)

54 75

1 3 5 10 23 25

X: Y:

Result:

Merging (cont.)

75

1 3 5 10 23 25 54

X: Y:

Result:

15

16

Lists and Iterators 10/8/2019

9

Merging (cont.)

1 3 5 10 23 25 54 75

X: Y:

Result:

18

Merge Two Sorted Sequences
 The combine step of

merge-sort has to
merge two sorted
sequences A and B
into a sorted
sequence S
containing the union
of the elements of A
and B

 Merging two sorted
sequences, each
with n elements,
takes O(2n) time.

17

18

Lists and Iterators 10/8/2019

10

Implementing Merge Sort
 There are two basic ways to implement merge sort:

 In Place: Merging is done with only the input array
 Pro: Requires only the space needed to hold the array
 Con: Takes longer to merge because if the next

element is in the right side then all of the elements
must be moved down.

 Double Storage: Merging is done with a temporary array
of the same size as the input array.
 Pro: Faster than In Place since the temp array holds

the resulting array until both left and right sides are
merged into the temp array, then the temp array is
appended over the input array.
 Con: The memory requirement is doubled.

20

Merge-Sort Tree
 An execution of merge-sort is depicted by a binary tree

 each node represents a recursive call of merge-sort and stores
 unsorted sequence before the execution and its partition
 sorted sequence at the end of the execution

 the root is the initial call
 the leaves are calls on subsequences of size 0 or 1

7 2  9 4  2 4 7 9

7  2  2 7 9  4  4 9

7  7 2  2 9  9 4  4

19

20

Lists and Iterators 10/8/2019

11

21

Execution Example
 Partition

7 2 9 4  2 4 7 9 3 8 6 1  1 3 8 6

7 2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

22

Execution Example (cont.)
 Recursive call, partition

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7 2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

21

22

Lists and Iterators 10/8/2019

12

23

Execution Example (cont.)
 Recursive call, partition

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

24

Execution Example (cont.)
 Recursive call, base case

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

23

24

Lists and Iterators 10/8/2019

13

25

Execution Example (cont.)
 Recursive call, base case

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

26

Execution Example (cont.)
 Merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

25

26

Lists and Iterators 10/8/2019

14

27

Execution Example (cont.)
 Recursive call, …, base case, merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

9  9 4  4

28

Execution Example (cont.)
 Merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 8 6

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

27

28

Lists and Iterators 10/8/2019

15

29

Execution Example (cont.)
 Recursive call, …, merge, merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 6 8

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

30

Execution Example (cont.)
 Merge

7 2  9 4  2 4 7 9 3 8 6 1  1 3 6 8

7  2  2 7 9 4  4 9 3 8  3 8 6 1  1 6

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

7 2 9 4  3 8 6 1  1 2 3 4 6 7 8 9

29

30

Lists and Iterators 10/8/2019

16

31

The Merge-Sort Algorithm
 Merge-sort on an input

sequence S with n
elements consists of
three steps:
 Divide: partition S into

two sequences S1 and S2
of about n2 elements
each

 Recur: recursively sort S1
and S2

 Combine: merge S1 and
S2 into a unique sorted
sequence

Algorithm mergeSort(S)
Input sequence S with n

elements
Output sequence S sorted

according to C
if S.size() > 1

(S1, S2)  partition(S, n/2)
mergeSort(S1)
mergeSort(S2)
S  merge(S1, S2)

32

Analysis of Merge-Sort
 The height h of the merge-sort tree is O(log n)

 at each recursive call we divide in half the sequence,
 The overall amount or work done at all the nodes of depth i is O(n)

 we partition and merge 2i sequences of size n2i

 we make 2i1 recursive calls
 Thus, the total running time of merge-sort is O(n log n)

depth #seqs size
0 1 n

1 2 n2

i 2i n2i

… … …

31

32

Lists and Iterators 10/8/2019

17

Evaluation
 Recurrence equation: Assume n is a

power of 2

c1 if n=1
T(n) =

2T(n/2) + c2n if n>1, n=2k

Solution
By Substitution:

T(n) = 2T(n/2) + c2n
T(n/2) = 2T(n/4) + c2n/2
…
T(n) = 4T(n/4) + 2 c2n
T(n) = 8T(n/8) + 3 c2n
…
T(n) = 2iT(n/2i) + ic2n

Assuming n = 2k, expansion halts when we get T(1) on right
side; this happens when i=k T(n) = 2kT(1) + kc2n
Since 2k=n, we know k=log(n); since T(1) = c1, we get

T(n) = c1n + c2nlogn;
thus an upper bound for TmergeSort(n) is O(nlogn)

33

34

Lists and Iterators 10/8/2019

18

Variants and Applications
• There are other variants of Merge Sorts including bottom-up

merge sort, k-way merge sorting, natural merge sort, …

• Bottom-up merge sort eliminates the divide process and
assumes all subarrays have 2k elements for some k, with
exception of the last subarray.

• Natural merge sort is known to be the best for nearly sorted
inputs. Sometimes, it takes only O(n) for some inputs.

• Merge sort’s double memory demands makes it not very
practical when the main memory is in short supply.

• Merge sort is the major method for external sorting, parallel
algorithms, and sorting circuits.

Natural Merge Sort

 Identify sorted (or reversely sorted) sub-lists in the
input (each is called a run).

 Merge all runs into one.
 Example:

 Input A = [10, 6, 2, 3, 5, 7, 3, 8]
 Three (reversed) runs: [(10, 6, 2), (3, 5, 7), (3, 8)]
 Reverse the reversed: [(2, 6, 10), (3, 5, 7), (3, 8)]
 Merge them in one: [2, 3, 4, 5, 6, 7, 8, 10]
 It takes O(n) to sort [n, n-1, …, 3, 2, 1].

 A good implementation of natural merge sort is called
Timsort.

35

36

Lists and Iterators 10/8/2019

19

External Sorting

 Using secondary storage effectively
 General Wisdom :

 I/O costs dominate
 Design algorithms to reduce I/O

2-Way Sort: Requires 3 Buffers
 Phase 1: PREPARE.

 Read a page, sort it, write it.
 only one buffer page is used

 Phase 2, 3, …, etc.: MERGE:
 Three buffer pages used.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

Disk

input
Main memory

Disk

1 buffer

1 buffer

1 buffer

37

38

Lists and Iterators 10/8/2019

20

Two-Way External Merge Sort
 Idea: Divide and

conquer: sort
subfiles and merge
into larger sorts

 Run: a list of sorted
items

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7

8,9
1,3
5,6 2

2,3

4,4
6,7

8,9

1,2
3,5
6

1,2
2,3

3,4

4,5
6,6

7,8

Pass 0  Only one
memory block is needed

Pass i > 0  Only three
memory blocks are needed

Two-Way External Merge Sort

 Costs for one pass:
read/write all

pages

 # of passes :
height of tree

 Total cost :
product of above

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7

8,9
1,3
5,6 2

2,3

4,4
6,7

8,9

1,2
3,5
6

1,2
2,3

3,4

4,5
6,6

7,8

Notice: We ignored the
CPU cost to sort a block in
memory or merge two
blocks

39

40

Lists and Iterators 10/8/2019

21

Two-Way External Merge Sort
 Each pass we read/write

each page in file.
 N pages in file => 2N

 Number of passes

 So total cost is:

  log2 1N

  2 12N Nlog 

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7

8,9
1,3
5,6 2

2,3

4,4
6,7

8,9

1,2
3,5
6

1,2
2,3

3,4

4,5
6,6

7,8

External Merge Sort

 What if we had more buffer pages?
 How do we utilize them wisely ?

- Two main ideas !

41

42

Lists and Iterators 10/8/2019

22

Phase 1 : Prepare

B Main memory buffers

INPUT 1

INPUT B

DiskDisk

INPUT 2

.

• Construct as large as possible starter lists.
• Will reduce the number of needed passes

Phase 2 : Merge

 Merge as many sorted sublists into one long sorted
list.

 Keep 1 buffer for the output
 Use B-1 buffers to read from B-1 lists

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

43

44

Lists and Iterators 10/8/2019

23

General External Merge Sort

 To sort a file with N pages using B buffer pages:
 Pass 0: use B buffer pages.

Produce sorted runs of B pages each.
 Pass 1, 2, …, etc.: merge B-1 runs.

 N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

* How can we utilize more than 3 buffer pages?

Cost of External Merge Sort
 Number of passes:

 Cost = 2N * (# of passes)

  1 1 log /B N B

45

46

Lists and Iterators 10/8/2019

24

Example
 Buffer : with 5 buffer pages
 File to sort : 108 pages

 Pass 0:
 Size of each run?
 Number of runs?

 Pass 1:
 Size of each run?
 Number of runs?

 Pass 2: ???

Example

 Buffer : with 5 buffer pages
 File to sort : 108 pages

 Pass 0: = 22 sorted runs of 5 pages
each (except last run is only 3 pages)

 Pass 1: = 6 sorted runs of 20 pages
each (last run is only 8 pages)

 Pass 2: 2 sorted runs, 80 pages and 28 pages
 Pass 3: Sorted file of 108 pages

 108 5/

 22 4/

• Total I/O costs: ?

47

48

Lists and Iterators 10/8/2019

25

Summary of External Sorting
 External sorting is important;
 Choose best internal sorting in Pass 0.
 External merge sort minimizes disk I/O

costs:
 Two-Way External Sorting

 Only 3 memory buffers are needed
 Multi-Way External Sorting

 Large number of memory buffers available
 Cost:

  1 1 log /B N B

Example: 2-Way Merge for 20 Pages
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

T1 T2 T3 T4 T5

U1 U2 U3

V1 V2

W1
Number of passes = 5

49

50

Lists and Iterators 10/8/2019

26

Example: 4-Way Merge for 20 Pages

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20

T1

S1 S2 S3 S4

Number of passes = 2

Number of Passes of External Sort

 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

- gain of utilizing all available buffers
- importance of a high fan-in during merging

#Pages
in File

#Buffers available in main-memory

51

52

Lists and Iterators 10/8/2019

27

53

Summary of Sorting Algorithms
Algorithm Time Notes

selection-sort O(n2)
 stable
 in-place
 for small data sets (< 1K)

insertion-sort O(n2)
 stable
 in-place
 for small data sets (< 1K)

heap-sort O(n log n)
 non-stable
 in-place
 for large data sets (1K — 1M)

merge-sort O(n log n)
 stable
 sequential data access
 for huge data sets (> 1M)

54

Quick-Sort
 Quick-sort is also a sorting

algorithm based on the
divide-and-conquer
paradigm:
 Divide: pick a random

element x (called pivot) and
partition S into
 L elements less than x
 E elements equal x
 G elements greater than x

 Recur: sort L and G
 Combine: join L, E and G

 Alternative: merge E into L or G.

x

x

L GE

x

53

54

Lists and Iterators 10/8/2019

28

Quicksort Algorithm
Given an array of n elements (e.g., integers):
 If array only contains one element, return
 Else

 pick one element to use as pivot.
 Partition elements into two sub-arrays:
 Elements less than or equal to pivot
 Elements greater than pivot

 Quicksort two sub-arrays
 Return results

Partitioning Array
Given a pivot, partition the elements of the array

such that the resulting array consists of:
1. One sub-array that contains elements >= pivot
2. Another sub-array that contains elements < pivot

The sub-arrays are stored in the original data
array.

Partitioning loops through, swapping elements
below/above pivot.

55

56

Lists and Iterators 10/8/2019

29

57

Partition using Lists
 We partition an input

sequence as follows:
 We remove, in turn, each

element y from S and
 We insert y into L, E or G,

depending on the result of
the comparison with the
pivot x

 Each insertion is at the end
of a sequence, and hence
takes O(1) time.

 Thus, the partition step of
quick-sort takes O(n) time.

 Pro: stable sort
 Cons: not in place

Algorithm partition(S, p)
Input sequence S, position p of pivot
Output subsequences L, E, G of the

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G  empty sequences
x  S.remove(p)
while S.isEmpty()

y  S.remove(S.first())
if y < x

L.addLast(y)
else if y = x

E.addLast(y)
else { y > x }

G.addLast(y)
return L, E, G

In-Place Partitioning Example
We are given array of n integers to sort:

40 20 10 80 60 50 7 30 100

57

58

Lists and Iterators 10/8/2019

30

Pick Pivot Element
There are a number of ways to pick the pivot element. In

this example, we will use the first element in the array:

40 20 10 80 60 50 7 30 100

40 20 10 80 60 50 7 30 100pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

59

60

Lists and Iterators 10/8/2019

31

40 20 10 80 60 50 7 30 100pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]
++too_big_index

40 20 10 80 60 50 7 30 100pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]
++too_big_index

61

62

Lists and Iterators 10/8/2019

32

40 20 10 80 60 50 7 30 100pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]
++too_big_index

40 20 10 80 60 50 7 30 100pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]
++too_big_index

2. While data[too_small_index] > data[pivot]
--too_small_index

63

64

Lists and Iterators 10/8/2019

33

40 20 10 80 60 50 7 30 100pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]
++too_big_index

2. While data[too_small_index] > data[pivot]
--too_small_index

40 20 10 80 60 50 7 30 100pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]
++too_big_index

2. While data[too_small_index] > data[pivot]
--too_small_index

3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]

65

66

Lists and Iterators 10/8/2019

34

40 20 10 30 60 50 7 80 100pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]
++too_big_index

2. While data[too_small_index] > data[pivot]
--too_small_index

3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]

40 20 10 30 60 50 7 80 100pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

1. While data[too_big_index] <= data[pivot]
++too_big_index

2. While data[too_small_index] > data[pivot]
--too_small_index

3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]

4. If too_small_index > too_big_index, go to 1.

67

68

Lists and Iterators 10/8/2019

35

1. While data[too_big_index] <= data[pivot]
++too_big_index

2. While data[too_small_index] > data[pivot]
--too_small_index

3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]

4. If too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]

40 20 10 30 7 50 60 80 100pivot_index = 0

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

Line 5 is optional

1. While data[too_big_index] <= data[pivot]
++too_big_index

2. While data[too_small_index] > data[pivot]
--too_small_index

3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]

4. If too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]

7 20 10 30 40 50 60 80 100pivot_index = 4

[0] [1] [2] [3] [4] [5] [6] [7] [8]

too_big_index too_small_index

Line 5 is optional

69

70

Lists and Iterators 10/8/2019

36

Partition Result

7 20 10 30 40 50 60 80 100

[0] [1] [2] [3] [4] [5] [6] [7] [8]

<= data[pivot] > data[pivot]

Recursive calls on two sides to get a sorted array.

72

Quick-Sort Tree
 An execution of quick-sort is depicted by a binary tree

 Each node represents a recursive call of quick-sort and stores
 Unsorted sequence before the execution and its pivot
 Sorted sequence at the end of the execution

 The root is the initial call
 The leaves are calls on subsequences of size 0 or 1

7 4 9 6 2  2 4 6 7 9

4 2  2 4 7 9  7 9

2  2 9  9

71

72

Lists and Iterators 10/8/2019

37

73

Execution Example
 Pivot selection

7 2 9 4  2 4 7 9

2  2

7 2 9 4 3 7 6 1  1 2 3 4 6 7 8 9

3 8 6 1  1 3 8 6

3  3 8  89 4  4 9

9  9 4  4

74

Execution Example (cont.)
 Partition, recursive call, pivot selection

2 4 3 1  2 4 7 9

9 4  4 9

9  9 4  4

7 2 9 4 3 7 6 1  1 2 3 4 6 7 8 9

3 8 6 1  1 3 8 6

3  3 8  82  2

73

74

Lists and Iterators 10/8/2019

38

75

Execution Example (cont.)
 Partition, recursive call, base case

2 4 3 1  2 4 7

1  1 9 4  4 9

9  9 4  4

7 2 9 4 3 7 6 1   1 2 3 4 6 7 8 9

3 8 6 1  1 3 8 6

3  3 8  8

76

Execution Example (cont.)
 Recursive call, …, base case, join

3 8 6 1  1 3 8 6

3  3 8  8

7 2 9 4 3 7 6 1  1 2 3 4 6 7 8 9

2 4 3 1  1 2 3 4

1  1 4 3  3 4

9  9 4  4

75

76

Lists and Iterators 10/8/2019

39

77

Execution Example (cont.)
 Recursive call, pivot selection

7 9 7 1  1 3 8 6

8  8

7 2 9 4 3 7 6 1  1 2 3 4 6 7 8 9

2 4 3 1  1 2 3 4

1  1 4 3  3 4

9  9 4  4

9  9

78

Execution Example (cont.)
 Partition, …, recursive call, base case

7 9 7 1  1 3 8 6

8  8

7 2 9 4 3 7 6 1  1 2 3 4 6 7 8 9

2 4 3 1  1 2 3 4

1  1 4 3  3 4

9  9 4  4

9  9

77

78

Lists and Iterators 10/8/2019

40

79

Execution Example (cont.)
 Join

7 9 7  17 7 9

8  8

7 2 9 4 3 7 6 1  1 2 3 4 6 7 7 9

2 4 3 1  1 2 3 4

1  1 4 3  3 4

9  9 4  4

9  9

Quicksort Analysis
 In-place quick-sort is not stable.
 Stable quick-sort is not in-place.
 What is best case running time? Assume that

keys are random, uniformly distributed.
 Recursion:

1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array

 Depth of recursion tree?

79

80

Lists and Iterators 10/8/2019

41

Quicksort Analysis
 Assume that keys are random,

uniformly distributed.
 What is best case running time?

Recursion:
1. Partition splits array in two sub-arrays of size

n/2
2. Quicksort each sub-array

 Depth of recursion tree? O(log2n)
 Number of accesses in partition? O(n)

Quicksort Analysis
 Assume that keys are random,

uniformly distributed.
 Best case running time: O(n log2n)
 Worst case running time?

81

82

Lists and Iterators 10/8/2019

42

Quicksort Analysis
 Assume that keys are random, uniformly

distributed.
 Best case running time: O(n log2n)
 Worst case running time?

 Recursion:
1. Partition splits array in two sub-arrays:

• one sub-array of size 0
• the other sub-array of size n-1

2. Quicksort each sub-array
 Depth of recursion tree?

84

Worst-case Running Time
 The worst case for quick-sort occurs when the pivot is the unique

minimum or maximum element
 One of L and G has size n  1 and the other has size 0
 The running time is proportional to the sum

n  (n  1) …  2 
 Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n  1

… …

n  1 1

83

84

Lists and Iterators 10/8/2019

43

Quicksort Analysis
 Assume that keys are random, uniformly

distributed.
 Best case running time: O(n log2n)
 Worst case running time?

 Recursion:
1. Partition splits array in two sub-arrays:

• one sub-array of size 0
• the other sub-array of size n-1

2. Quicksort each sub-array
 Depth of recursion tree? O(n)
 Number of accesses per partition? O(n)

Quicksort Analysis
 Assume that keys are random, uniformly

distributed.
 Best case running time: O(n log2n)
 Worst case running time: O(n2)!!!

85

86

Lists and Iterators 10/8/2019

44

Quicksort Analysis
 Assume that keys are random, uniformly

distributed.
 Best case running time: O(n log2n)
 Worst case running time: O(n2)!!!
 What can we do to avoid worst case?

 Randomly pick a pivot

Quicksort Analysis

 Bad divide: T(n) = T(1) + T(n-1) --
O(n2)

 Good divide: T(n) = T(n/2) + T(n/2) -- O(n
log2n)

 Random divide: Suppose on average one bad
divide followed by one good divide.

 T(n) = T(1) + T(n-1) = T(1) + 2T((n-1)/2)
 T(n) = c + 2T((n-1)/2) is still O(n log2n)

87

88

Lists and Iterators 10/8/2019

45

89

Expected Running Time
 Consider a recursive call of quick-sort on a sequence of size s

 Good call: the sizes of L and G are each less than 3s4
 Bad call: one of L and G has size greater than 3s4

 A call is good with probability 12
 1/2 of the possible pivots cause good calls:

7 9 7 1  1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

90

Expected Running Time, Part 2
 Probabilistic Fact: The expected number of coin tosses required in

order to get k heads is 2k
 For a node of depth i, we expect

 i2 ancestors are good calls
 The size of the input sequence for the current call is at most (34)i2n

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

Therefore, we have
 For a node of depth 2log43n,

the expected input size is one
 The expected height of the

quick-sort tree is O(log n)

The amount or work done at the
nodes of the same depth is O(n)
Thus, the expected running time
of quick-sort is O(n log n)

89

90

Lists and Iterators 10/8/2019

46

Randomized Guarantees

 Randomization is a very important and useful
idea. By either picking a random pivot or
scrambling the permutation before sorting it,
we can say:
 “With high probability, randomized quicksort runs

in O(n log n) time.”
 Randomization is a general tool to improve

algorithms with bad worst-case but good
average-case complexity.

 The worst-case is still there, but we almost
certainly won’t see it.

Improving Performance of
Quicksort
 For sub-arrays of size 1000 or less, apply

brute force search, or insert-sort.
 Sub-array of size 1: trivial
 Sub-array of size 2:
 if(data[first] > data[second]) swap them

 Sub-array of size 1000 or less: call insert-
sort.

 Improved selection of pivot.

91

92

Lists and Iterators 10/8/2019

47

Improved Pivot Selection
Pick median value of three elements from data array:

data[0], data[n/2], and data[n-1].

Use this median value as pivot.

For large arrays, use the median of three medians from
{data[0], data[n/8], data[2n/8]}, {data[3n/8],
data[4n/8], data[5n/8]}, and {data[6n/8], data[7n/8],
data[n-1]}.

Improving Performance of
Quicksort
 For sub-arrays of size 100 or less, apply

brute force search, e.g., insert-sort.
 Improved selection of pivot.
 Test if the sub-array is already sorted

before recursive calls.
 If there are lots of identical numbers,

use three-way partitioning.

93

94

Lists and Iterators 10/8/2019

48

95

In-Place 3-Way Partitioning
 Dijkstra’s 3-way partititioning (Holland flag problem)

 Bentley-McIlroy’s 3-way partitioning

<p | =p | ?......................? | >p p=pivot

=p | <p | ?......................? | >p | =p p=pivot

<p | =p | >p

<p | =p | >p

96

In-Place 3-Way Randomized
Quick-Sort
 Quick-sort can be implemented

to run in-place
 In the partition step, we use

replace operations to rearrange
the elements of the input
sequence such that
 the elements less than the

pivot have rank less than h
 the elements equal to the pivot

have rank between h and k
 the elements greater than the

pivot have rank greater than k
 The recursive calls consider

 elements with rank less than h
 elements with rank greater

than k

Algorithm inPlaceQuickSort(S, l, r)
Input sequence S, ranks l and r
Output sequence S with the

elements of rank between l and r
rearranged in increasing order

if l  r
return

i  a random integer between l and r
p  S.elemAtRank(i)
(h, k)  inPlace3WayPartition(p)
inPlaceQuickSort(S, l, h  1)
inPlaceQuickSort(S, k  1, r)

95

96

Lists and Iterators 10/8/2019

49

97

Stability of sorting algorithms
 A STABLE sort preserves relative order of records with

equal keys

Sorted on first key:

Sort the first file on
second key:

Records with key value
3 are not in order on
first key!!

98

Summary of Sorting Algorithms
Algorithm Time Notes

selection-sort O(n2)
 in-place, stable
 slow (not good for any inputs)

insertion-sort O(n2)
 in-place, stable
 slow (good for small inputs)

quick-sort O(n log n)
expected

 in-place, not stable
 fastest (good for large inputs)

heap-sort O(n log n)
 in-place, not stable
 fast (good for large inputs)

merge-sort O(n log n)
 not in-place, stable
 fast (good for huge inputs)

97

98

Lists and Iterators 10/8/2019

50

Divide and Conquer
Simple
Divide

Fancy
Divide

Uneven
Divide
1 vs n-1

Insert Sort Selection
Sort

Even Divide
n/2 vs n/2 Merge Sort Quick Sort

100

Comparison-Based Sorting
 Many sorting algorithms are comparison based.

 They sort by making comparisons between pairs of objects
 Examples: bubble-sort, selection-sort, insertion-sort, heap-sort,

merge-sort, quick-sort, ...
 Let us therefore derive a lower bound on the running

time of any algorithm that uses comparisons to sort n
elements, x1, x2, …, xn.

Is xi < xj?

yes

no

99

100

Lists and Iterators 10/8/2019

51

101

How Fast Can We Sort?

 Selection Sort, Bubble Sort, Insertion Sort:

 Heap Sort, Merge sort:

 Quicksort:

 What is common to all these algorithms?
 Make comparisons between input elements

ai < aj, ai ≤ aj, ai = aj, ai ≥ aj, or ai > aj

O(n2)

O(nlogn)

O(nlogn) - average

Comparison-based Sorting
 Comparison sort

 Only comparison of pairs of elements may be used to
gain order information about a sequence.

 Hence, a lower bound on the number of comparisons
will be a lower bound on the complexity of any
comparison-based sorting algorithm.

 All our sorts have been comparison sorts
 The best worst-case complexity so far is (n lg n)

(e.g., heapsort, merge sort).
 We prove a lower bound of (n lg n) for any

comparison sort: merge sort and heapsort are
optimal.

 The idea is simple: there are n! outcomes, so we
need a tree with n! leaves, and therefore log(n!) =
n log n.

101

102

Lists and Iterators 10/8/2019

52

Decision Tree
For insertion sort operating on three elements.

1:2

2:3 1:3

1:3 2:31,2,3

1,3,2 3,1,2

2,1,3

2,3,1 3,2,1











>

>

>>

Contains 3! = 6 leaves.

Simply unroll all loops
for all possible inputs.

Node i:j means
compare A[i] to A[j].

Leaves show outputs;

No two paths go to
same leaf!

Decision Tree (Cont.)
 Execution of sorting algorithm corresponds to

tracing a path from root to leaf.
 The tree models all possible execution traces.
 At each internal node, a comparison ai  aj is made.

 If ai  aj, follow left subtree, else follow right subtree.
 View the tree as if the algorithm splits in two at each

node, based on information it has determined up to that
point.

 When we come to a leaf, ordering a(1)  a (2)  … 
a (n) is established.

 A correct sorting algorithm must be able to produce
any permutation of its input.
 Hence, each of the n! permutations must appear at one or

more of the leaves of the decision tree.

103

104

Lists and Iterators 10/8/2019

53

A Lower Bound for Worst Case
 Worst case no. of comparisons for a sorting

algorithm is
 Length of the longest path from root to any of

the leaves in the decision tree for the algorithm.
Which is the height of its decision tree.

 A lower bound on the running time of any
comparison sort is given by
 A lower bound on the heights of all decision

trees in which each permutation appears as a
reachable leaf.

Optimal sorting for three elements

Any sort of six elements has 5 internal nodes.

1:2

2:3 1:3

1:3 2:31,2,3

1,3,2 3,1,2

2,1,3

2,3,1 3,2,1











>

>

>>

There must be a worst-case path of length ≥ 3.

105

106

Lists and Iterators 10/8/2019

54

A Lower Bound for Worst Case

Proof:
 Suffices to determine the height of a decision tree.
 The number of leaves is at least n! (# outputs)
 The number of internal nodes ≥ n!–1
 The height is at least log(n!–1) = (n lg n)

Theorem: Any comparison sort algorithm requires
(n lg n) comparisons in the worst case.

108

Counting Comparisons
 Let us just count comparisons then.
 Each possible run of the algorithm corresponds

to a root-to-leaf path in a decision tree
xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

107

108

Lists and Iterators 10/8/2019

55

109

Decision Tree Height
 The height of the decision tree is a lower bound on the running time
 Every input permutation must lead to a separate leaf output
 If not, some input …4…5… would have same output ordering as

…5…4…, which would be wrong
 Since there are n!=12  … n leaves, the height is at least log (n!)

minimum height (time)

log (n!)

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

n!

110

The Lower Bound
 Any comparison-based sorting algorithms takes at

least log(n!) time
 Therefore, any such algorithm takes worst-case time

at least

 That is, any comparison-based sorting algorithm must
run in (n log n) time in the worst case.

).2/(log)2/(
2

log)!(log
2

nn
n

n

n









109

110

