
Lists and Iterators 10/1/2019

1

1

Union-Find Structures

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Maze Creation
 Build a random maze by erasing edges.

2

1

2

Lists and Iterators 10/1/2019

2

Maze Creation
 Pick Start and End

3

Start

End

Maze Creation
 Repeatedly pick random edges to delete.

4

Start

End

3

4

Lists and Iterators 10/1/2019

3

Desired Properties
 None of the boundary is deleted
 Every cell is reachable from every other

cell.
 There are no cycles – no cell can reach

itself by a path unless it retraces some
part of the path.

5

A Cycle, not allowed

Start

End

5

6

Lists and Iterators 10/1/2019

4

Pick random edges to delete

7

Start

End

 Green edge can be deleted.
 Red edge cannot be deleted.

A Good Maze

8

Start

End

7

8

Lists and Iterators 10/1/2019

5

A Hidden Tree

9

Start

End

Maze Creation: Algorithm

1. Given the dimension s of the maze, create an s
by s matrix, give a name to each cell of the
matrix, identify the beginning and ending cells.

2. Collect all the possible edges between the cells,
excluding the boundary edges, into E.

3. If not all the cells are reachable from each other,
randomly pick and remove an edge e from E;
otherwise go to 5.

4. If the two ends of edge e are already connected
by a path, add e into M; otherwise, throw e away,
and go to 3.

5. Return the union of E and M as the edges of the
maze.

Cost:
n = s2

O(n)

O(n)

O(n)

O(n)

O(1)

9

10

Lists and Iterators 10/1/2019

6

Number the Cells

For an s by s
matrix, there are
n = s2 cells and
2s(s – 1) edges.
We need to delete
s2 – 1 edges.
There are (s – 1)2

edges in the maze.

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

We have disjoint sets S ={ {1}, {2}, {3}, {4},… {36} }
each cell is a singleton set.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), … }
60 edges total, representing the neighborhood relation.
Boundary edges are excluded.

Group Cells into Disjoint Sets
 At any moment, two cells are in the same set if and

only if they are connected by a path in the maze.

 An edge (x, y) is safe to delete, if x and y are not in
the same set.

 After (x, y) is deleted, the two sets containing x and
y, respectively, are joined together.

12

Disjoint sets are good data structure for
implementing equivalence relations.

11

12

Lists and Iterators 10/1/2019

7

Equivalence Relation
Relation R on S is a subset of SxS.
 For every pair of elements a, b from a set S,

a R b is either true or false.
 a R b is true iff (a, b) is in R. In this case,

we say a is related to b.

An equivalence relation satisfies:
1. (Reflexive) a R a
2. (Symmetric) a R b iff b R a
3. (Transitive) a R b and b R c implies a R c

13

Equivalence Classes
 Given a set of things…

{ grapes, blackberries, plums, apples, oranges, peaches,
raspberries, lemons, bananas }

 …define the equivalence relation
All citrus fruit is related, all berries, all stone fruits, …

 …partition them into related subsets
{ grapes }, { blackberries, raspberries }, { oranges,
lemons }, { plums, peaches }, { apples }, { bananas }

Everything belongs to a unique class.
Everything in an equivalence class is related to each other.

14

13

14

Lists and Iterators 10/1/2019

8

Determining equivalence classes
 Idea: give every equivalence class a name

 { oranges, limes, lemons } = “like-ORANGES”
 { peaches, plums } = “like-PEACHES”
 Etc.

 To answer if two fruits are in the same class:
 FIND the class name of one fruit.
 FIND the class name of the other fruit.
 Are they the same name?

15

Building Equivalence Classes
 Start with disjoint, singleton sets:

 { apples }, { bananas }, { peaches }, …

 As you gain information about the equivalence relation,
take UNION of sets that are now related:
 { peaches, plums }, { limes, oranges, lemons }, { apples },

{ bananas }, …

 E.g. if peaches R limes, then we get
 { peaches, plums, limes, oranges, lemons }

16

15

16

Lists and Iterators 10/1/2019

9

Disjoint Union - Find
 Maintain a set of pairwise disjoint sets.

 {3,5,7} , {4,2,8}, {9}, {1,6}
 Each set has a unique name, using one

of its members as its name
 {3,5,7} , {4,2,8}, {9}, {1,6}

17

Union
 Union(x, y) – return the union of two

sets named by x and y
 {3,5,7} , {4,2,8}, {9}, {1,6}

Union(5,1)

 {3,5,7,1,6}, {4,2,8}, {9},

18

17

18

Lists and Iterators 10/1/2019

10

Find
 Find(x) – return the name of the set

containing x.
 {3,5,7,1,6}, {4,2,8}, {9},
 Find(1) = 5
 Find(4) = 8

19

Example of Deletion

20

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,30,32
33,34,35,36}

Pick edge (8,14)

19

20

Lists and Iterators 10/1/2019

11

Example: After Deletion

21

S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Find(8) = 7
Find(14) = 20

S
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Union(7,20)

Example

22

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19

14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Pick (19,20)

21

22

Lists and Iterators 10/1/2019

12

Example at the End

23

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,3,4,5,6,7,… 36}

Maze Creation: Algorithm
 S = set of sets of connected cells
 Initially, S = { {1}, {2}, …, {s2} }
 E = set of edges, representing the neighborhood

of each cell.

24

Alg. CreateMaze (S, E) {
while (|S| > 1) {

pick a random, unused edge (x,y) from E;
u = Find(x);
v = Find(y);
if (u v) { Union(u,v); remove (x, y) from E }
else mark (x, y) as “used”; /* move (x, y) into M */

}
return E;

} // All remaining members of E form the maze.

23

24

Lists and Iterators 10/1/2019

13

Implementing Disjoint Sets
 n elements

Total Cost of: m finds, at most n -1 unions
 Target complexity: total O(m+n) i.e. O(1)

amortized per operation.

 O(1) worst-case for find as well as union
would be great, but it cannot be done.

 Known result: find and union can be done
practically in O(1) time.

25

26

List-based Implementation
 Each set is stored in a sequence represented with a

linked-list
 Each node should store an object containing the

element and a reference to the set name

25

26

Lists and Iterators 10/1/2019

14

27

Analysis of List-based Representation
Worst case time for find is O(1).
When doing a union, always move elements
from the smaller set to the larger set
 Each time an element is moved it goes to a set of

size at least double its old set
 Thus, an element can be moved at most O(log n)

times
Total time needed to do n – 1 unions and m
finds is O(n log n + m).

Implementing Disjoint Sets
 Observation: trees let us find many elements

given one root…

 Idea: if we reverse the pointers (make them
point up from child to parent), we can find a
single root from many element.

 Idea: Use one tree for each equivalence class.
The name of the class is the tree root.

28

27

28

Lists and Iterators 10/1/2019

15

Up-Tree for Uinon/Find

29

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate
state

Roots are the names of each set.

Find Operation
 Find(x) follow x to the root and return the root.
 Cost: O(h), h: height of the tree

30

1

2

3

45

6

7

Find(6) = 7

29

30

Lists and Iterators 10/1/2019

16

Union Operation
 Union(i,j) - assuming i and j roots, point i to j.
 Cost: O(1)

31

1

2

3

45

6

7

Union(1,7)

Array Implementation of Trees
 Array of indices

32

0

1

2

34

5

6

- 0 - 6 6 4 -
0 1 2 3 4 5 6

Up Up[x] = “-” or “-1”,
means x is a root.

31

32

Lists and Iterators 10/1/2019

17

Union

33

void Union(int[] Up, int x, int y) {
//precondition: x and y are roots
Up[x] = y;

}

Constant Time!

FIND
 Design Find operator

 Recursive version
 Iterative version

34

static int Find(int[] Up, int x) {
//Pre: Up[0..(siz-1)] is the parent info;
// x is in the range 0 to size-1
if (Up[x] == “-1”) return x;
return Find(Up[x]);

}

Complexity: Depth of x in the tree.

33

34

Lists and Iterators 10/1/2019

18

A Bad Case

35

1 2 3 n…

1

2 3 n

Union(1,2)

1

2

3 n

Union(2,3)

Union(n-1,n)

…

…

1

2

3

n

:
:

Find(1) n steps!!

m finds: O(mn)

Now this doesn’t look good
Can we do better? Yes!

1. Improve union so that find only takes O(log n)
• Union-by-size
• Union-by-height (height)
• The cost of m finds is Θ(m log n)

2. Improve find so that it becomes even better!
• Path compression
• Reduces complexity to almost O(1) per operation

36

35

36

Lists and Iterators 10/1/2019

19

Union by size/height
 Union by size (weight)

 Always point the smaller tree to the root of the larger tree
 Union by height (rank)

 Always point the shorter tree to the root of the higher tree

37

1

2

3

45

6

7
W-Union(1,7)
R-Union(1,7)

2 41

Array Implementation

38

0

1

2

34

5

6
2 41

-
2

0 -
1

6 6 4 -
4

0 1 2 3 4 5 6
Up

size
-
1

0 -
0

6 6 4 -
2

0 1 2 3 4 5 6
Up

height

37

38

Lists and Iterators 10/1/2019

20

Union by size

39

void W_Union(int i,j){
//Pre: i and j are roots//
int wi = size[i];
int wj = size[j];
if (wi < wj) {
Up[i] = j;
size[j] = wi + wj;

} else {
Up[j] = i;
size[i] = wi + wj;

}
}

Computing time?

Union by height

40

void R_Union(int i,j){
//Pre: i and j are roots//
int ri = height[i];
int rj = height[j];
if (ri < rj) {
Up[i] = j;

} if (ri > rj) {
Up[j] = i;

} else { // ri == rj
height[j]++; Up[j] = i;

}
}

Computing time?

39

40

Lists and Iterators 10/1/2019

21

Example Again

41

1 2 3 n

1

2 3 n

Union(1,2)

1

2

3

n

Union(2,3)

Union(n-1,n)

…

… :
:

1

2

3 n

…

Find(1) constant time
…

…

…

…

Analysis of Union by size/height
 Theorem: With union by size/height an up-tree

of height h has size at least 2h.
 Proof by induction on height

 Basis: h = 0. The up-tree has one node, 20 = 1
 Inductive step: Assume Theorem true for all h’ < h.

h-1

A tree T of height h
must have a child T2

of height h-1
T1 T2

T W(T1) > W(T2) > 2h-1

Union by
size/height

Induction
hypothesis

W(T) = W(T1) + W(T2)
> 2h-1 + 2h-1 = 2h

41

42

Lists and Iterators 10/1/2019

22

Analysis of Union by size/height
 Let T be an up-tree of size n formed by union

by size/height. Let h be its height.
 n > 2h (just proved)
 log n > h

 Find(x) in tree T takes O(log n) time.
 Can we do better?

43

Worst Case for Union by size/height

44

n/2 W-Unions

n/4 W-Unions

n/8 W-Unions

43

44

Lists and Iterators 10/1/2019

23

Binomial Trees

45

Binomial trees of height 1:

Binomial trees of height 2:

Binomial trees of height 3:

A single node is a binomial tree.
If two binomial trees have the same
height (or size), the union of them is
also a binomial tree.

Binomial Trees

46

Given a binomial tree T of height h:

How many nodes in T?

How many nodes at depth d in T?

Binomial trees of height 3:

A single node is a binomial tree.
If two binomial trees have the same
height (or size), the union of them is
also a binomial tree.

2h

C(h, d) = h!/(d!(h-d)!)

45

46

Lists and Iterators 10/1/2019

24

Example of Worst Cast (cont’)

47

After n – 1 = n/2 + n/4 + …+ 1 Unions

Find
If there are n = 2k nodes then the longest
path from leaf to root has length k = log2(n).

log2n

A binomial tree

Path Compression
 On a Find operation point all the nodes on the

search path directly to the root.

48

3

45

6

7

3 456

7

PC-Find(3)

8 9

10

8 910

5 5

47

48

Lists and Iterators 10/1/2019

25

Self-Adjustment Works

49

PC-Find(x)

x

Possible Quiz Question:
Draw the result of Find(e)

50

f ha

b

c

d

e

g

i

49

50

Lists and Iterators 10/1/2019

26

Path Compression Find

51

int PC_Find(int i) {
int r = i;
while (Up[r] != -1) //find root
r = Up[r];

if (i != r) { //compress path//
int k = Up[i];
while (k != r) {
Up[i] = r;
i = k;
k = Up[k];

}
}
return r;

}

52

Function Definition

Ackermann’s function was defined in 1920s

by German mathematician and logician

Wilhelm Ackermann (1896-1962).

A(m,n), m,n N such that,

A(0, n) = n + 1, n 0;

A(m,0) = A(m-1, 1), m > 0;

A(m,n) = A(m-1, A(m, n-1)), m, n > 0;

51

52

Lists and Iterators 10/1/2019

27

53

A(1, 0) = A(0, 1) = 2

A(1, 1) = A (0, A(1, 0)) = A(0, 2) = 3

A(1, 2) = A (0, A(1, 1)) = A(0, 3) = 4

A(1, n) = n + 2

A(2, 0) = A(1, 1) = 3

A(2, 1) = A(1, A(2, 0)) = A(1, 3) = 5

A(2, 2) = A(1, A(2, 1)) = A(1, 5) = 7

A(2, n) = 2n + 3

Simple addition and subtraction!!

A(0, n) = n + 1, n 0;
A(m,0) = A(m-1, 1), m > 0;
A(m,n) = A(m-1, A(m, n-1)), m, n > 0;

A(3, 0) = A(2, 1) = 5

A(3, 1) = A (2, A(3, 0)) = A(2, 5) = 13

A(3, 2) = A (2, A(3, 1)) = A(2, 13) = 29

A(3, n) = 2n+3 – 3

A(4, 0) = A(3, 1) = 13

A(4, 1) = A(3, A(4, 0)) = A(3, 13) = 65533

A(4, 2) = A(3, A(4, 1)) = 265536 – 3

A(4, 3) = A(3, A(4, 2)) = 2A(4,2)+3 – 3

A(4, n) = 2(n + 3) – 3

A(5, n) = 2(n + 3) – 3

A(6, n) = 2(n + 3) – 3

54

Equivalent Definition

A(0, n) = n + 1

A(1, n) = 2 + (n + 3) - 3

A(2, n) = 2 x (n + 3) - 3

A(3, n) = 2n + 3 – 3

A(4, n) = 222…2
– 3

(n + 3 terms)

…

Terms of the form 222…2
are known as power towers.

It is a well defined total function that grows so fast.

53

54

Lists and Iterators 10/1/2019

28

55

α(m, n) = min{ i 1 : A(i,) > lg n } nm /

Inverse of Ackermann’s Function

(x, y) is a really slowly growing function.
How slow does (x, y) grow?
(x, y) = 4 for x far larger than the number of
atoms in the universe (2300)

 shows up in:
– Computation Geometry (surface complexity)

– Combinatorics of sequences

Disjoint Union / Find with Union by
size/height and Path Compression

 Worst case time complexity for a W-Union/R-
Union is O(1) and for a PC-Find is O(log n).

 The total time complexity for m n
operations on n elements is O(m α(m, n))
 α(m, n) <= 4 for all reasonable n. Essentially

constant time per operation!

56

55

56

Lists and Iterators 10/1/2019

29

Amortized Complexity
 For disjoint union / find with union by

size/height and path compression.
 Amortized time per operation is essentially a

constant.
 Worst case time for a single union is O(1).
 Worst case time for a single PC-Find is O(log n).

 An individual operation can be costly, but over
time the average cost per operation is not.

57

Basic Algorithm
 S = set of sets of connected cells
 Initially, S = { {1}, {2}, …, {n2} }
 E = set of edges, representing the neighborhood of each

cell.

58

Alg. CreateMaze (S, E) {
while (|S| > 1) {

pick a random, unused edge (x,y) from E;
u = Find(x);
v = Find(y);
if (u v) { Union(u,v); remove (x, y) from E }
else mark (x, y) as “used”;

}
return E;

} // All remaining members of E form the maze.

57

58

Lists and Iterators 10/1/2019

30

A larger size maze

59

A Maze Generator

60

59

60

