

<complex-block>

A Good Maze

	Maze Creation: Algorithm	
		Cost:
		$n = s^2$
1.	Given the dimension s of the maze, create an s	
	by s matrix, give a name to each cell of the matrix, identify the beginning and ending cells.	O(n)
2.	Collect all the possible edges between the cells, excluding the boundary edges, into E.	O(n)
3.	If not all the cells are reachable from each other, randomly pick and remove an edge e from E; otherwise go to 5.	O(n)
4.	If the two ends of edge e are already connected by a path, add e into M; otherwise, throw e away, and go to 3.	O(n)
5.	Return the union of E and M as the edges of the maze.	O(1)

Nu We h each We h 60 ec	mt ave c cell i ave a lges 1	Def lisjoi is a s all po total,	nt se ingle ssibl	1e ts S = ton so e edg esenti	Ce ={ {1 et. es E ing th	 S }, {2} ={ (1 ne nei	}, {3}, {4 ,2), (1,7) ghborhoo	<pre>+}, {36} } , (2,8), (2,3), } od relation.</pre>
Start	1 7 13 19 25 31	2 8 14 20 26 32	3 9 15 21 27 33	4 10 16 22 28 34	5 11 17 23 29 35	6 12 18 24 30 36	End	For an s by s matrix, there are $n = s^2$ cells and 2s(s - 1) edges. We need to delete $s^2 - 1$ edges. There are $(s - 1)^2$ edges in the maze.

Exa	am	ple	e 0	f C)el	eti	on	S {1,2, <u>7</u> ,8,9,13,19}
	Pic	k edg	e (8,	14)				$\{\frac{4}{5}\}$
Start	-1	2	3	4	5	6		{ <u>10</u> }
	7	8	9	10	11	12		{11, <u>17</u> }
	13	14	15	16	17	18		{ <u>12</u> } {14, 20 ,26,27}
	19	20	21	22	23	24		{15, <u>16</u> ,21}
	25	26	27	28	29	30		• • • • • • • • • • • • • • • • • • •
	31	32	33	34	35	36	End	{22,23,24,29,30,32 33, <u>34</u> ,35,36}
								20

Example:	After D	eletion
$S = \{1,2,7,8,9,13,19\}$ $\{\frac{3}{4}\}$ $\{\frac{4}{5}\}$ $\{\frac{6}{6}\}$ $\{10\}$ $\{11,17\}$ $\{\frac{12}{5}\}$ $\{14,20,26,27\}$ $\{15,16,21\}$	Find(8) = 7 Find(14) = 20 Union(7,20)	$S \\ \{1,2,\underline{7},8,9,13,19,14,20\ 26,27\} \\ \{\underline{3}\} \\ \{\underline{4}\} \\ \{\underline{5}\} \\ \{\underline{6}\} \\ \{\underline{10}\} \\ \{11,\underline{17}\} \\ \{\underline{12}\} \\ \{15,\underline{16},21\} \\ .$
{22,23,24,29,39,32 33, <u>34</u> ,35,36}		{22,23,24,29,39,32 33, <u>34</u> ,35,36} 21

Ev-	m	nla						S
LXC	1111	hig						{1,2, <u>7</u> ,8,9,13,19
								14,20,26,27}
	Picl	k (19	,20)					{ <u>3</u> }
								$\{\frac{4}{5}\}$
Start	1	2	- 3	4	- 5	6		{ <u>2</u> }
	7	8	9	10	11	12	-	{ <u>10</u> }
	13	14	15	16	17	18		{11, <u>17</u> } {12}
	19	20	21	22	23	24		$\{15, \underline{16}, 21\}$
	25	26	27	28	29	30		• • • • • • • • • • • • • • • • • • •
	31	32	33	34	35	36	End	{22,23,24,29,39,32
								33, <u>34</u> ,35,36}
								22

 Initially, S 	sets of connected cells = $\{ \{1\}, \{2\},, \{s^2\} \}$
E = set of of each ce	edges, representing the neighborhood II.
Alg. CreateM	aze (S, E) {
while $(S >$	1) {
pick a ra	andom, unused edge (x,y) from E;
u = Finc	l(x);
$\mathbf{v} = \operatorname{Finc}$	l(y);
$if(n \neq n)$	<pre>v) { Union(u,v); remove (x, y) from E }</pre>
II (4 7	

A(0, n) = n + 1,	n≥ 0;
A(m,0) = A(m-1, 1),	m > 0;
A(m,n) = A(m-1, A(m-1))	n, n-1)), m, n > 0;
A(1, 0) = A(0, 1) = 2	A(3, 0) = A(2, 1) = 5
A(1, 1) = A(0, A(1, 0)) = A(0, 2) = 3	A(3, 1) = A(2, A(3, 0)) = A(2, 5) = 13
A(1, 2) = A(0, A(1, 1)) = A(0, 3) = 4	A(3, 2) = A(2, A(3, 1)) = A(2, 13) = 29
A(1, n) = n + 2	$A(3, n) = 2^{n+3} - 3$
A(2, 0) = A(1, 1) = 3	A(4, 0) = A(3, 1) = 13
A(2, 1) = A(1, A(2, 0)) = A(1, 3) = 5	A(4, 1) = A(3, A(4, 0)) = A(3, 13) = 65533
A(2, 2) = A(1, A(2, 1)) = A(1, 5) = 7	$A(4, 2) = A(3, A(4, 1)) = 2^{65536} - 3$
A(2, n) = 2n + 3	$A(4, 3) = A(3, A(4, 2)) = 2^{A(4,2)+3} - 3$
	$A(4, n) = 2\uparrow\uparrow(n + 3) - 3$
	$A(5, n) = 2^{\uparrow\uparrow}(n + 3) - 3$
Simple addition and subtraction!!	A(6, n) = $2\uparrow\uparrow\uparrow\uparrow(n + 3) - 3$
	53

1 1 1	
o Init	ally, S = { {1}, {2},, {n ² } }
• E =	set of edges, representing the neighborhood of each
cell	
Alg	. CreateMaze (S, E) {
W	hile (S > 1) {
	pick a random, unused edge (x,y) from E;
	u = Find(x);
<u> </u>	v = Find(y);
	v = F ind(y); if $(u \neq v) \{ Union(u,v); remove (x, y) from E \}$

