Union-Find Structures

Maze Creation

- Build a random maze by erasing edges.
Maze Creation

- Pick Start and End

Repeatedly pick random edges to delete.
Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles – no cell can reach itself by a path unless it retraces some part of the path.

A Cycle, not allowed
Pick random edges to delete

- Green edge can be deleted.
- Red edge cannot be deleted.

A Good Maze
Maze Creation: Algorithm

1. Given the dimension s of the maze, create an s by s matrix, give a name to each cell of the matrix, identify the beginning and ending cells. $O(s^2)$
2. Collect all the possible edges between the cells, excluding the boundary edges, into E. $O(s^2)$
3. If not all the cells are reachable from each other, randomly pick and remove an edge e from E; otherwise go to 5. $O(s^2)$
4. If the two ends of edge e are already connected by a path, add e into M; otherwise, throw away e, and go to 3. $O(s^2)$
5. Return the union of E and M as the edges of the maze. $O(1)$

Cost: $O(s^2)$
Number the Cells

We have disjoint sets $S = \{(1), (2), (3), (4), \ldots, (36)\}$
- each cell is a singleton set.

We have all possible edges $E = \{(1,2), (1,7), (2,8), (2,3), \ldots\}$
- 60 edges total, representing the neighborhood relation.
- Boundary edges are excluded.

For an s by s matrix, there are s^2 cells and $2s(s-1)$ edges.
- We need to delete $s^2 - 1$ edges.
- There are $(s-1)^2$ edges in the maze.

Group Cells into Disjoint Sets

- At any moment, two cells are in the same set if and only if they are connected by a path in the maze.
- An edge (x, y) is safe to delete, if x and y are not in the same set.
- After (x, y) is deleted, the two sets containing x and y are joined together.

Disjoint sets are good data structure for implementing equivalence relations.
Example of Deletion

- Pick edge (8,14)
- S = \{1,2,7,8,9,13,19\}
- \{3\}
- \{4\}
- \{5\}
- \{6\}
- \{10\}
- \{11,17\}
- \{12\}
- \{14,20,26,27\}
- \{15,16,21\}
- \{22,23,24,29,30,32\}
- \{33,34,35,36\}

Equivalence Relation

Relation R on S is a subset of $S \times S$.
- For every pair of elements a, b from a set S, $a R b$ is either true or false.
- $a R b$ is true iff (a, b) is in R. In this case, we say a is related to b.

An equivalence relation satisfies:
1. (Reflexive) $a R a$
2. (Symmetric) $a R b$ iff $b R a$
3. (Transitive) $a R b$ and $b R c$ implies $a R c$
Equivalence Classes

- Given a set of things...

 \{ grapes, blackberries, plums, apples, oranges, peaches,
 raspberries, lemons, bananas \}

- ...define the equivalence relation

 All citrus fruit is related, all berries, all stone fruits, ...

- ...partition them into related subsets

 \{ grapes \}, \{ blackberries, raspberries \}, \{ oranges,
 lemons \}, \{ plums, peaches \}, \{ apples \}, \{ bananas \}

Everything belongs to a unique class.
Everything in an equivalence class is related to each other.

Determining equivalence classes

- Idea: give every equivalence class a name

 \{ oranges, limes, lemons \} = "like-ORANGES"
 \{ peaches, plums \} = "like-PEACHES"
 Etc.

- To answer if two fruits are related:

 FIND the class name of one fruit.
 FIND the class name of the other fruit.
 Are they the same name?
Building Equivalence Classes

- Start with disjoint, singleton sets:
 - \{ apples \}, \{ bananas \}, \{ peaches \}, ...
- As you gain information about the equivalence relation, take UNION of sets that are now related:
 - \{ peaches, plums \}, \{ limes, oranges, lemons \}, \{ apples \}, \{ bananas \}, ...
- E.g. if peaches \text{ R } limes, then we get
 - \{ peaches, plums, limes, oranges, lemons \}

Disjoint Union - Find

- Maintain a set of pairwise disjoint sets.
 - \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
- Each set has a unique name, using one of its members
 - \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
Union
- Union(x,y) – return the union of two sets named by x and y
 - \{3, 5, 7\}, \{4, 2, 8\}, \{9\}, \{1, 6\}

Union(5,1)
- \{3, 5, 7, 1, 6\}, \{4, 2, 8\}, \{9\},

Find
- Find(x) – return the name of the set containing x.
 - \{3, 5, 7, 1, 6\}, \{4, 2, 8\}, \{9\},
 - Find(1) = 5
 - Find(4) = 8
Example of Deletion

Pick edge (8,14)

Example: After Deletion

Find(8) = 7
Find(14) = 20
Union(7,20)
Example

Pick (19,20)

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Example at the End

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>
Maze Creation: Algorithm

- $S =$ set of sets of connected cells
- Initially, $S = \{ \{1\}, \{2\}, \ldots, \{s^2\} \}$
- $E =$ set of edges, representing the neighborhood of each cell.

Alg. CreateMaze (S, E) {
 while ($|S| > 1$) {
 pick a random, unused edge (x,y) from E;
 $u =$ Find(x);
 $v =$ Find(y);
 if ($u \neq v$) { Union(u,v); remove (x,y) from E } \\
 else mark (x,y) as "used"; /* move (x,y) into M */
 }
 return E;
} // All remaining members of E form the maze.

Implementing Disjoint Sets

- n elements
 Total Cost of: m finds, at most $n - 1$ unions
- Target complexity: total $O(m+n)$ i.e. $O(1)$ amortized per operation.

- $O(1)$ worst-case for find as well as union would be great, but it’s simply not true.
- Known result: find and union can be done practically in $O(1)$ time.
List-based Implementation

- Each set is stored in a sequence represented with a linked-list
- Each node should store an object containing the element and a reference to the set name

Analysis of List-based Representation

- Worst case time for find is $O(1)$.
- When doing a union, always move elements from the smaller set to the larger set
 - Each time an element is moved it goes to a set of size at least double its old set
 - Thus, an element can be moved at most $O(\log n)$ times
- Total time needed to do $n - 1$ unions and m finds is $O(n \log n + m)$.
Implementing Disjoint Sets

- Observation: *trees* let us find many elements given one root...

- Idea: if we *reverse* the pointers (make them point up from child to parent), we can find a single root from many elements...

- Idea: Use one tree for each equivalence class. The name of the class is the tree root.

Up-Tree for Union/Find

Initial state

1 2 3 4 5 6 7

Intermediate state

1 2 3 4 5 6 7

Roots are the names of each set.
Find Operation

- Find(x) follow x to the root and return the root.
- Cost: $O(h)$, h: height of the tree

Find(6) = 7

Union Operation

- Union(i,j) - assuming i and j roots, point i to j.
- Cost: $O(1)$

Union(1,7)
Simple Implementation

- Array of indices

```
0 1 2 3 4 5 6
- 0 - 6 6 4 -
```

$Up[x] = \text{"-" or "-1"}$, means x is a root.

Union

```java
void Union( int[] Up, int x, int y) {
    //precondition: x and y are roots
    Up[x] = y;
}
```

Constant Time!
FIND

- Design Find operator
 - Recursive version
 - Iterative version

```java
static int Find(int[] Up, int x) {
    //Pre: Up[0..(siz-1)] is the parent info;
    // x is in the range 0 to size-1
    if (Up[x] == "-1") return x;
    return Find(Up[x]);
}
```

Complexity: depth of x in the tree.

A Bad Case

```
Union(1,2)
Union(2,3)
Union(n-1,n)
Find(1)  n steps!!
m finds: O(mn)
```
Now this doesn’t look good 😞

Can we do better? Yes!

1. Improve union so that find only takes $O(\log n)$
 - Union-by-size
 - Union-by-height (height)
 - The cost of m finds is $\Theta(m \log n)$

2. Improve find so that it becomes even better!
 - Path compression
 - Reduces complexity to almost $O(1)$ per operation

Union by size/height

- Union by size (weight)
 - Always point the smaller tree to the root of the larger tree
- Union by height (rank)
 - Always point the shorter tree to the root of the higher tree

W-Union(1,7) R-Union(1,7)
Array Implementation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>-</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Union by size

```c
void W_Union(int i, j){
    //Pre: i and j are roots/
    int wi = size[i];
    int wj = size[j];
    if (wi < wj) {
        Up[i] = j;
        size[j] = wi + wj;
    } else {
        Up[j] = i;
        size[i] = wi + wj;
    }
}
```

Computing time?
Union by height

void R_Union(int i, j){
 // Pre: i and j are roots //
 int ri = height[i];
 int rj = height[j];
 if (ri < rj) {
 Up[i] = j;
 } if (ri > rj) {
 Up[j] = i;
 } else { // ri == rj
 height[j]++; Up[j] = i;
 }
}

Computing time?

Example Again

Find(1) constant time
Analysis of Union by size/height

- **Theorem:** With union by size/height an up-tree of height h has size at least 2^h.
- **Proof by induction on height**
 - Basis: $h = 0$. The up-tree has one node, $2^0 = 1$
 - Inductive step: Assume true for all $h' < h$.

A tree T of height h must have a child T_2 of height $h-1$.

$W(T) = W(T_1) + W(T_2)$

$W(T_1) \geq 2^{h-1}$ (by induction hypothesis)

$W(T_2) \geq 2^{h-1} + 2^{h-1} = 2^h$

Analysis of Union by size/height

- Let T be an up-tree of size n formed by union by size/height. Let h be its height.
- $n \geq 2^h$ (just proved)
- $\log n \geq h$

- Find(x) in tree T takes $O(\log n)$ time.
- Can we do better?
Worst Case for Union by size/height

- \(\frac{n}{2}\) W-Unions
- \(\frac{n}{4}\) W-Unions
- \(\frac{n}{8}\) W-Unions

Binomial Trees

- A single node is a binomial tree.
- If two binomial trees have the same height (or size), the union of them is also a binomial tree.

Binomial trees of height 1:

Binomial trees of height 2:

Binomial trees of height 3:
Binomial Trees

Given a binomial tree \(T \) of height \(h \):

How many nodes in \(T \)? \(2^h \)

How many nodes at depth \(d \) in \(T \)? \(C(h, d) = \frac{h!}{d!(h-d)!} \)

Binomial trees of height 3:

Example of Worst Cast (cont’)

After \(n - 1 = \frac{n}{2} + \frac{n}{4} + \ldots + 1 \) Unions

A binomial tree

If \(n = 2^k \) nodes then the longest path from leaf to root has length \(k = \log_2(n) \).
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Self-Adjustment Works
Exercise: Draw the result of `Find(e)`

Path Compression `Find`

```c
int PC_Find(int i) {
    int r = i;
    while (Up[r] != -1) // find root
        r = Up[r];
    if (i != r) { // compress path/
        int k = Up[i];
        while (k != r) {
            Up[i] = r;
            i = k;
            k = Up[k];
        }
    }
    return r;
}
```
Function Definition

Ackermann's function was defined in 1920s by German mathematician and logician Wilhelm Ackermann (1896-1962).

\[A(m,n), \quad m,n \in \mathbb{N} \text{ such that,} \]

\[A(0, n) = n + 1, \quad n \geq 0; \]
\[A(m,0) = A(m-1, 1), \quad m > 0; \]
\[A(m,n) = A(m-1, A(m, n-1)), \quad m, n > 0; \]

Example

\[A(1, 2) = A(0, A(1, 1)) \]
\[= A(0, A(0, A(1, 0))) \]
\[= A(0, A(0, A(0, 1))) \]
\[= A(0, A(0, 2)) \]
\[= A(0, 3) \]
\[= 4 \]

Simple addition and subtraction!!
Equivalent Definition

\[A(0, n) = n + 1 \]
\[A(1, n) = 2 + (n + 3) - 3 \]
\[A(2, n) = 2 \times (n + 3) - 3 \]
\[A(3, n) = 2^{n + 3} - 3 \]
\[A(4, n) = 2^{2^{2^{\ldots^{n+3} - 3} - 3} - 3} \]

Terms of the form \(2^{2^{\ldots}}\) are known as power towers. It is a well-defined total function that grows so fast.

Inverse of Ackermann’s Function

\[\alpha(m, n) = \min\{i \geq 1 : A(i, \left\lfloor m/n \right\rfloor) > \lg n\} \]

\(\alpha(x, y)\) is a really slowly growing function.

How slow does \(\alpha(x, y)\) grow?

\[\alpha(x, y) = 4 \text{ for } x \text{ far larger than the number of atoms in the universe } (2^{300}) \]

\(\alpha\) shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences
Disjoint Union / Find with Union by size/height and Path Compression

- Worst case time complexity for a W-Union/R-Union is $O(1)$ and for a PC-Find is $O(\log n)$.
- The total time complexity for $m \geq n$ operations on n elements is $O(m \alpha(m, n))$
 - $\alpha(m, n) \leq 4$ for all reasonable n. Essentially constant time per operation!

Amortized Complexity

- For disjoint union / find with union by size/height and path compression.
 - Amortized time per operation is essentially a constant.
 - Worst case time for a single union is $O(1)$.
 - Worst case time for a single PC-Find is $O(\log n)$.
- An individual operation can be costly, but over time the average cost per operation is not.
Basic Algorithm

- S = set of sets of connected cells
- Initially, S = { {1}, {2}, ..., {n²} }
- E = set of edges, representing the neighborhood of each cell.

Alg. CreateMaze (S, E) {
 while (|S| > 1) {
 pick a random, unused edge (x,y) from E;
 u = Find(x);
 v = Find(y);
 if (u ≠ v) { Union(u,v); remove (x, y) from E }
 else mark (x, y) as "used";
 }
 return E;
} // All remaining members of E form the maze.

A larger size maze
A Maze Generator

Algorithm MazeGenerator(G, E):

Input: A grid, G, consisting of n cells and a set, E, of m “walls,” each of which divides two cells, x and y, such that the walls in E initially separate and isolate all the cells in G

Output: A subset, R of E, such that removing the edges in R from E creates a maze defined on G by the remaining walls

while R has fewer than n – 1 edges do
 Choose an edge, (x, y), in E uniformly at random from among those previously unchosen
 if find(x) ≠ find(y) then
 union(find(x), find(y))
 Add the edge (x, y) to R

return R