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Union-Find Structures

Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Maze Creation
 Build a random maze by erasing edges.

2

1
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Maze Creation
 Pick Start and End

3

Start

End

Maze Creation
 Repeatedly pick random edges to delete.

4

Start

End

3

4



Lists and Iterators 10/1/2019

3

Desired Properties
 None of the boundary is deleted
 Every cell is reachable from every other 

cell.
 There are no cycles – no cell can reach 

itself by a path unless it retraces some 
part of the path.

5

A Cycle, not allowed

Start

End

5
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Pick random edges to delete

7

Start

End

 Green edge can be deleted.
 Red edge cannot be deleted.

A Good Maze

8

Start

End

7
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A Hidden Tree

9

Start

End

Maze Creation: Algorithm

1. Given the dimension s of the maze, create an s 
by s matrix, give a name to each cell of the 
matrix, identify the beginning and ending cells.

2. Collect all the possible edges between the cells, 
excluding the boundary edges, into E.

3. If not all the cells are reachable from each other, 
randomly pick and remove an edge e from E; 
otherwise go to 5.

4. If the two ends of edge e are already connected 
by a path, add e into M; otherwise, throw e away, 
and go to 3. 

5. Return the union of E and M as the edges of the 
maze.

Cost:
n = s2

O(n)

O(n)

O(n)

O(n)

O(1)

9
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Number the Cells

For an s by s 
matrix,  there are 
n = s2 cells and 
2s(s – 1) edges.
We need to delete 
s2 – 1 edges. 
There are (s – 1)2

edges in the maze.

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

We have disjoint sets S ={ {1}, {2}, {3}, {4},… {36} }  
each cell is a singleton set.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), … } 
60 edges total, representing the neighborhood relation.
Boundary edges are excluded.

Group Cells into Disjoint Sets
 At any moment, two cells are in the same set if and 

only if they are connected by a path in the maze.

 An edge (x, y) is safe to delete, if x and y are not in 
the same set. 

 After (x, y) is deleted, the two sets containing x and 
y, respectively, are joined together.

12

Disjoint sets are good data structure for 
implementing equivalence relations.

11
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Equivalence Relation
Relation R on S is a subset of SxS.
 For every pair of elements a, b from a set S, 

a R b is either true or false.
 a R b is true iff (a, b) is in R. In this case, 

we say a is related to b.

An equivalence relation satisfies:
1. (Reflexive)  a R a
2. (Symmetric) a R b iff b R a
3. (Transitive) a R b and b R c implies a R c

13

Equivalence Classes
 Given a set of things…

{ grapes, blackberries, plums, apples, oranges, peaches, 
raspberries, lemons, bananas }

 …define the equivalence relation
All citrus fruit is related, all berries, all stone fruits,  …

 …partition them into related subsets
{ grapes }, { blackberries, raspberries }, { oranges, 
lemons }, { plums, peaches }, { apples }, { bananas }

Everything belongs to a unique class.
Everything in an equivalence class is related to each other.

14

13
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Determining equivalence classes
 Idea: give every equivalence class a name

 { oranges, limes, lemons } = “like-ORANGES”
 { peaches, plums } = “like-PEACHES”
 Etc.

 To answer if two fruits are in the same class:
 FIND the class name of one fruit.
 FIND the class name of the other fruit.
 Are they the same name?

15

Building Equivalence Classes
 Start with disjoint, singleton sets:

 { apples }, { bananas }, { peaches }, …

 As you gain information about the equivalence relation, 
take UNION of sets that are now related:
 { peaches, plums }, { limes, oranges, lemons }, { apples }, 

{ bananas }, …

 E.g. if peaches R limes, then we get
 { peaches, plums, limes, oranges, lemons }

16
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Disjoint Union - Find
 Maintain a set of pairwise disjoint sets.

 {3,5,7} , {4,2,8}, {9}, {1,6}
 Each set has a unique name, using one 

of its members as its name
 {3,5,7} , {4,2,8}, {9}, {1,6}

17

Union
 Union(x, y) – return the union of two 

sets named by x and y
 {3,5,7} , {4,2,8}, {9}, {1,6}

Union(5,1)

 {3,5,7,1,6}, {4,2,8}, {9},

18

17
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Find
 Find(x) – return the name of the set 

containing x.
 {3,5,7,1,6}, {4,2,8}, {9}, 
 Find(1) = 5
 Find(4) = 8

19

Example of Deletion

20

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,30,32
33,34,35,36}

Pick edge (8,14)

19

20
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Example: After Deletion

21

S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Find(8) = 7
Find(14) = 20

S
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Union(7,20)

Example

22

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19

14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Pick (19,20)

21

22
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Example at the End

23

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,3,4,5,6,7,… 36}

Maze Creation: Algorithm
 S = set of sets of connected cells
 Initially, S = { {1}, {2}, …, {s2} } 
 E = set of edges, representing the neighborhood 

of each cell.

24

Alg. CreateMaze (S, E) {
while (|S| > 1) { 

pick a random, unused edge (x,y) from E;
u = Find(x);
v = Find(y);
if (u  v) { Union(u,v); remove (x, y) from E }
else  mark (x, y) as “used”; /* move (x, y) into M */

}
return E;

}   // All remaining members of E form the maze.

23
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Implementing Disjoint Sets
 n elements

Total Cost of: m finds,  at most n -1 unions
 Target complexity: total O(m+n) i.e. O(1)

amortized per operation.

 O(1) worst-case for find as well as union
would be great, but it cannot be done.

 Known result: find and union can be done 
practically in O(1) time.

25

26

List-based Implementation
 Each set is stored in a sequence represented with a 

linked-list
 Each node should store an object containing the 

element and a reference to the set name

25
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Analysis of List-based Representation
Worst case time for find is O(1).
When doing a union, always move elements 
from the smaller set to the larger set
 Each time an element is moved it goes to a set of 

size at least double its old set
 Thus, an element can be moved at most O(log n) 

times
Total time needed to do n – 1 unions and m 
finds is O(n log n + m).

Implementing Disjoint Sets
 Observation: trees let us find many elements 

given one root…

 Idea: if we reverse the pointers (make them 
point up from child to parent), we can find a 
single root from many element.

 Idea: Use one tree for each equivalence class.  
The name of the class is the tree root.

28

27

28



Lists and Iterators 10/1/2019

15

Up-Tree for Uinon/Find

29

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate
state

Roots are the names of each set.

Find Operation
 Find(x) follow x to the root and return the root.
 Cost: O(h), h: height of the tree

30

1

2

3

45

6

7

Find(6) = 7

29

30
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Union Operation
 Union(i,j) - assuming i and j roots, point i to j.
 Cost: O(1)

31

1

2

3

45

6

7

Union(1,7)

Array Implementation of Trees
 Array of indices

32

0

1

2

34

5

6

- 0 - 6 6 4 -
0   1   2   3   4   5   6 

Up Up[x] = “-” or “-1”, 
means x is a root.

31

32
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Union

33

void Union( int[] Up, int x, int y) {
//precondition: x and y are roots
Up[x] = y;

}

Constant Time!

FIND
 Design Find operator

 Recursive version
 Iterative version

34

static int Find(int[] Up, int x) {
//Pre: Up[0..(siz-1)] is the parent info;  
// x is in the range 0 to size-1
if (Up[x] == “-1”) return x;
return Find(Up[x]);

}

Complexity: Depth of x in the tree.

33

34
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A Bad Case

35

1 2 3 n…

1

2 3 n

Union(1,2)

1

2

3 n

Union(2,3)

Union(n-1,n)

…

…

1

2

3

n

:
:

Find(1)   n steps!!

m finds: O(mn)

Now this doesn’t look good 
Can we do better?     Yes!

1. Improve union so that find only takes O(log n)
• Union-by-size
• Union-by-height (height)
• The cost of m finds is Θ(m log n )

2. Improve find so that it becomes even better!
• Path compression
• Reduces complexity to almost O(1) per operation

36

35

36
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Union by size/height
 Union by size (weight)

 Always point the smaller tree to the root of the larger tree
 Union by height (rank)

 Always point the shorter tree to the root of the higher tree

37

1

2

3

45

6

7
W-Union(1,7)
R-Union(1,7)

2 41

Array Implementation

38

0

1

2

34

5

6
2 41

-
2

0 -
1

6 6 4 -
4

0   1   2   3   4    5   6  
Up

size
-
1

0 -
0

6 6 4 -
2

0   1   2   3   4    5   6  
Up

height

37

38
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Union by size

39

void W_Union(int i,j){
//Pre: i and j are roots//
int wi = size[i];
int wj = size[j];
if (wi < wj) {
Up[i] = j;
size[j] = wi + wj;

} else {
Up[j] = i;
size[i] = wi + wj;

}
}

Computing time?

Union by height

40

void R_Union(int i,j){
//Pre: i and j are roots//
int ri = height[i];
int rj = height[j];
if (ri < rj) {
Up[i] = j;

} if (ri > rj) {
Up[j] = i;

} else { // ri == rj
height[j]++; Up[j] = i;

}
}

Computing time?

39

40



Lists and Iterators 10/1/2019

21

Example Again

41

1 2 3 n

1

2 3 n

Union(1,2)

1

2

3

n

Union(2,3)

Union(n-1,n)

…

… :
:

1

2

3 n

…

Find(1)   constant time
…

…

…

…

Analysis of Union by size/height
 Theorem: With union by size/height an up-tree 

of height h has size at least 2h.
 Proof by induction on height

 Basis: h = 0. The up-tree has one node, 20 = 1
 Inductive step: Assume Theorem true for all h’ < h.

h-1

A tree T of height h 
must have a child T2

of height h-1
T1 T2

T W(T1) > W(T2) > 2h-1

Union by 
size/height

Induction
hypothesis

W(T) = W(T1) + W(T2)
> 2h-1 + 2h-1 = 2h

41
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Analysis of Union by size/height
 Let T be an up-tree of size n formed by union 

by size/height.  Let h be its height.
 n > 2h (just proved)
 log n > h

 Find(x) in tree T takes O(log n) time.
 Can we do better?

43

Worst Case for Union by size/height

44

n/2 W-Unions

n/4 W-Unions

n/8 W-Unions

43

44
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Binomial Trees

45

Binomial trees of height 1:

Binomial trees of height 2:

Binomial trees of height 3:

A single node is a binomial tree.
If two binomial trees have the same 
height (or size), the union of them is 
also a binomial tree.

Binomial Trees

46

Given a binomial tree T of height h:

How many nodes in T?

How many nodes at depth d in T?

Binomial trees of height 3:

A single node is a binomial tree.
If two binomial trees have the same 
height (or size), the union of them is 
also a binomial tree.

2h

C(h, d) = h!/(d!(h-d)!)

45

46
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Example of Worst Cast (cont’)

47

After n – 1 = n/2 + n/4 + …+ 1 Unions

Find
If there are n = 2k nodes then the longest
path from leaf to root has length k = log2(n).

log2n

A binomial tree

Path Compression
 On a Find operation point all the nodes on the 

search path directly to the root.

48

3

45

6

7

3 456

7

PC-Find(3)

8 9

10

8 910

5 5

47

48
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Self-Adjustment Works

49

PC-Find(x)

x

Possible Quiz Question:
Draw the result of Find(e)

50

f ha

b

c

d

e

g

i

49

50
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Path Compression Find

51

int PC_Find(int i) {
int r = i;
while (Up[r] != -1) //find root
r = Up[r];

if (i != r) { //compress path//
int k = Up[i];
while (k != r) {
Up[i] = r;
i = k;
k = Up[k];

}
}
return r;

}

52

Function Definition

Ackermann’s function was defined in 1920s  

by German mathematician and logician 

Wilhelm Ackermann (1896-1962). 

A(m,n), m,n  N  such that, 

A(0, n) = n + 1,                        n 0;

A(m,0) = A(m-1, 1),                 m > 0;

A(m,n) = A(m-1, A(m, n-1)),    m, n > 0;

51
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A(1, 0) = A(0, 1) = 2

A(1, 1) = A (0, A(1, 0)) = A(0, 2) = 3

A(1, 2) = A (0, A(1, 1)) = A(0, 3) = 4

A(1, n) = n + 2

A(2, 0) = A(1, 1) = 3

A(2, 1) = A(1, A(2, 0)) = A(1, 3) = 5

A(2, 2) = A(1, A(2, 1)) = A(1, 5) = 7

A(2, n) = 2n + 3

Simple addition and subtraction!!

A(0, n) = n + 1,                        n 0;
A(m,0) = A(m-1, 1),                 m > 0;
A(m,n) = A(m-1, A(m, n-1)),    m, n > 0;

A(3, 0) = A(2, 1) = 5

A(3, 1) = A (2, A(3, 0)) = A(2, 5) = 13

A(3, 2) = A (2, A(3, 1)) = A(2, 13) = 29

A(3, n) = 2n+3 – 3 

A(4, 0) = A(3, 1) = 13

A(4, 1) = A(3, A(4, 0)) = A(3, 13) = 65533

A(4, 2) = A(3, A(4, 1)) = 265536 – 3

A(4, 3) = A(3, A(4, 2)) = 2A(4,2)+3 – 3

A(4, n) = 2(n + 3) – 3

A(5, n) = 2(n + 3) – 3

A(6, n) = 2(n + 3) – 3

54

Equivalent Definition

A(0, n) = n + 1

A(1, n) = 2 + (n + 3) - 3

A(2, n) = 2 x (n + 3) - 3

A(3, n) = 2n + 3 – 3

A(4, n) = 222…2 
– 3

(n + 3 terms)

…

Terms of the form 222…2
are known as power towers.

It is a well defined total function that grows so fast.

53

54



Lists and Iterators 10/1/2019

28

55

α(m, n) = min{ i     1 : A( i,            ) > lg n }  nm /

Inverse of Ackermann’s Function

(x, y) is a really slowly growing function.
How slow does (x, y) grow?   
(x, y) = 4 for x far larger than the number of 
atoms in the universe (2300)

 shows up in:
– Computation Geometry (surface complexity)

– Combinatorics of sequences

Disjoint Union / Find with Union by 
size/height and Path Compression

 Worst case time complexity for a W-Union/R-
Union is O(1) and for a PC-Find is O(log n). 

 The total time complexity for m  n
operations on n elements is O(m α(m, n) ) 
 α(m, n) <= 4 for all reasonable n. Essentially 

constant time per operation!

56

55

56



Lists and Iterators 10/1/2019

29

Amortized Complexity
 For disjoint union / find with union by 

size/height and path compression. 
 Amortized time per operation is essentially a 

constant.
 Worst case time for a single union is O(1).
 Worst case time for a single PC-Find is O(log n).

 An individual operation can be costly, but over 
time the average cost per operation is not.  

57

Basic Algorithm
 S = set of sets of connected cells
 Initially, S = { {1}, {2}, …, {n2} } 
 E = set of edges, representing the neighborhood of each 

cell.

58

Alg. CreateMaze (S, E) {
while (|S| > 1) {

pick a random, unused edge (x,y) from E;
u = Find(x);
v = Find(y);
if (u  v) { Union(u,v); remove (x, y) from E }
else  mark (x, y) as “used”; 

}
return E;

}   // All remaining members of E form the maze.

57
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A larger size maze

59

A Maze Generator

60

59

60


