Hash Tables

```cpp
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

xkcd. http://xkcd.com/221/. "Random Number." Used with permission under Creative Commons 2.5 License.

The Search Problem

- Find items with keys matching a given search key
 - Given an array A, containing n keys, and a search key x, find the index i such as x=A[i]
 - As in the case of sorting, a key could be part of a large record.

example of a record

<table>
<thead>
<tr>
<th>Key</th>
<th>other data</th>
</tr>
</thead>
</table>

Special Case: Dictionaries

- **Dictionary** = data structure that supports mainly two basic operations: **insert** a new item and **return an item with a given key**.
 - Queries: return information about the set S with key k:
 - get (S, k)
 - Modifying operations: change the set
 - put (S, k): insert new or update the item of key k.
 - remove (S, k) – not very often

Direct Addressing

- **Assumptions:**
 - Key values are distinct
 - Each key is drawn from a universe \(U = \{0, 1, \ldots, N-1\} \)

- **Idea:**
 - Store the items in an array, indexed by keys

- **Direct-address table** representation:
 - An array \(T[0 \ldots N-1] \)
 - Each slot, or position, in \(T \) corresponds to a key in \(U \)
 - For an element \(x \) with key \(k \), a pointer to \(x \) (or \(x \) itself) will be placed in location \(T[k] \)
 - If there are no elements with key \(k \) in the set, \(T[k] \) is empty, represented by NIL
Direct Addressing (cont’d)

(insert/delete in O(1) time)

Comparing Different Implementations

- Implementing dictionaries using:
 - Direct addressing
 - Ordered/unordered arrays
 - Ordered linked lists
 - Balanced search trees

<table>
<thead>
<tr>
<th></th>
<th>put</th>
<th>get</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct addressing</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>ordered array</td>
<td>O(N)</td>
<td>O(lgN)</td>
</tr>
<tr>
<td>unordered array</td>
<td>O(1)</td>
<td>O(N)</td>
</tr>
<tr>
<td>ordered list</td>
<td>O(N)</td>
<td>O(N)</td>
</tr>
<tr>
<td>balance search tree</td>
<td>O(lgN)</td>
<td>O(lgN)</td>
</tr>
</tbody>
</table>
Hash Tables

- When \(n \) is much smaller than \(\max(U) \), where \(U \) is the set of all keys, a **hash table** requires much less space than a **direct-address table**
 - Can reduce storage requirements to \(O(n) \)
 - Can still get \(O(1) \) search time, but on the **average** case, not the worst case

Hash Tables

- Use a function \(h \) to compute the slot for each key
- Store the element in slot \(h(k) \)
- A **hash function** \(h \) transforms a key into an index in a hash table \(T[0...N-1] \):
 \[
 h : U \rightarrow \{0, 1, \ldots, N - 1\}
 \]
- We say that \(k \) **hashes** to \(h(k) \), hash value of \(k \).
- Advantages:
 - Reduce the range of array indices handled: \(N \) instead of \(\max(U) \)
 - Storage is also reduced
Example: HASH TABLES

\[U \] (universe of keys)

\[k \] (actual keys)

\[k_1, k_4, k_2, k_5, k_3 \]

\[h(k_1), h(k_4), h(k_2) = h(k_5), h(k_3), m - 1 \]

Example

Suppose that the keys are nine-digit social security numbers

Possible hash function

\[h(ssn) = sss \mod 100 \] (last 2 digits of ssn)

e.g., if ssn = 10123411 then \(h(10123411) = 11 \)
Do you see any problems with this approach?

Collisions

- Two or more keys hash to the same slot!!
- For a given set of n keys
 - If \(n \leq N \), collisions may or may not happen, depending on the hash function
 - If \(n > N \), collisions will definitely happen (i.e., there must be at least two keys that have the same hash value)
- Avoiding collisions completely is hard, even with a good hash function
Hash Functions

- A hash function transforms a key into a table address
- **What makes a good hash function?**
 1. Easy to compute
 2. Approximates a random function: for every input, every output is equally likely (**simple uniform hashing**)
- In practice, it is very hard to satisfy the simple uniform hashing property
 - i.e., we don’t know in advance the probability distribution that keys are drawn from

Good Approaches for Hash Functions

- Minimize the chance that closely related keys hash to the same slot
 - Strings such as *stop, tops,* and *pots* should hash to different slots
- Derive a hash value that is independent from any patterns that may exist in the distribution of the keys.
The Division Method

- **Idea:**
 - Map a key \(k \) into one of the \(N \) slots by taking the remainder of \(k \) divided by \(N \)

 \[h(k) = k \mod N \]

- **Advantage:**
 - fast, requires only one operation

- **Disadvantage:**
 - Certain values of \(N \) are bad, e.g.,
 - power of 2
 - non-prime numbers

Example - The Division Method

- If \(N = 2^p \), then \(h(k) \) is just the least significant \(p \) bits of \(k \)
 - \(p = 1 \Rightarrow N = 2 \)
 - \(h(k) = \{0, 1\} \), least significant 1 bit of \(k \)
 - \(p = 2 \Rightarrow N = 4 \)
 - \(h(k) = \{0, 1, 2, 3\} \), least significant 2 bits of \(k \)

- Choose \(N \) to be a prime, not close to a power of 2
 - Column 2: \(k \mod 97 \)
 - Column 3: \(k \mod 100 \)
The Multiplication Method

Idea:
- Multiply key k by a constant A, where $0 < A < 1$
- Extract the fractional part of kA
- Multiply the fractional part by N
- Take the floor of the result

$$h(k) = \lfloor N (kA - \lfloor kA \rfloor) \rfloor$$

- Disadvantage: A little slower than division method
- Advantage: Value of N is not critical, e.g., typically 2^p

Hash Functions

- A hash function is usually specified as the composition of two functions:
 - Hash code: h_1: keys \rightarrow integers
 - Compression function: h_2: integers $\rightarrow [0, N-1]$
 - Typically, h_2 is mod N.
- The hash code is applied first, and the compression function is applied next on the result, i.e.,
 $$h(x) = h_2(h_1(x))$$
- The goal of the hash function is to "disperse" the keys in an apparently random way
Typical Function for H_1

- **Polynomial accumulation:**
 - We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits) $a_0 a_1 \ldots a_{n-1}$.
 - We evaluate the polynomial $p(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_{n-1} z^{n-1}$ at a fixed value z, ignoring overflows.
 - Especially suitable for strings (e.g., the choice $z = 33$ gives at most 6 collisions on a set of 50,000 English words).

- Polynomial $p(z)$ can be evaluated in $O(n)$ time using Horner's rule:
 - The following polynomials are successively computed, each from the previous one in $O(1)$ time:
 - $p_0(z) = a_{n-1}$
 - $p_i(z) = a_{n-i-1} + z p_{i-1}(z)$ for $i = 1, 2, \ldots, n-1$
 - We have $p(z) = p_{n-1}(z)$.
 - Good values for z: 33, 37, 39, and 41.

Compression Functions

- **Division:**
 - $h_2(y) = y \mod N$
 - The size N of the hash table is usually chosen to be a prime.
 - The reason has to do with number theory and is beyond the scope of this course.

- **Random linear hash function:**
 - $h_2(y) = (ay + b) \mod N$
 - a and b are random nonnegative integers such that $a \mod N \neq 0$.
 - Otherwise, every integer would map to the same value b.
Handling Collisions

We will review the following methods:

- Separate Chaining
- Open addressing
 - Linear probing
 - Quadratic probing
 - Double hashing

Handling Collisions Using Chaining

Idea:

- Put all elements that hash to the same slot into a linked list
- Slot j contains a pointer to the head of the list of all elements that hash to j
Collision with Chaining

- Choosing the size of the table
 - Small enough not to waste space
 - Large enough such that lists remain short
 - Typically 1/5 or 1/10 of the total number of elements
- How should we keep the lists: ordered or not?
 - Not ordered!
 - Insert is fast
 - Can easily remove the most recently inserted elements

Insert in Hash Tables

Algorithm put(k, v): // k is a new key

\[t = A[h(k)].put(k, v) \]
\[n = n + 1 \]
return t

- Worst-case running time is \(O(1) \)
- Assumes that the element being inserted isn’t already in the list
- It would take an additional search to check if it was already inserted
Deletion in Hash Tables

Algorithm `remove(k):`
 t = A[h(k)].remove(k)
 if t ≠ null then {k was found}
 n = n - 1
 return t

- Need to find the element to be deleted.
- Worst-case running time:
 - Deletion depends on searching the corresponding list

Searching in Hash Tables

Algorithm `get(k):`
 return A[h(k)].get(k)

- Running time is proportional to the length of the list of elements in slot h(k)
Analysis of Hashing with Chaining: Worst Case

- How long does it take to search for an element with a given key?

- **Worst case:**
 - All n keys hash to the same slot
 - Worst-case time to search is $\Theta(n)$, plus time to compute the hash function

Analysis of Hashing with Chaining: Average Case

- **Average case**
 - depends on how well the hash function distributes the n keys among the N slots

- **Simple uniform hashing** assumption:
 - Any given element is equally likely to hash into any of the N slots (i.e., probability of collision $Pr(h(x)=h(y))$, is $1/N$)

- Length of a list:
 - $T[j].\text{size} = n_j$, $j = 0, 1, \ldots, N - 1$

- Number of keys in the table:
 - $n = n_0 + n_1 + \cdots + n_{N-1}$

- Load factor: Average value of n_j:
 - $E[n_j] = \alpha = n/N$
Load Factor of a Hash Table

- Load factor of a hash table T:
 \[\alpha = \frac{n}{N} \]
 - n = # of elements stored in the table
 - N = # of slots in the table = # of linked lists
- α is the average number of elements stored in a chain
- α can be $<, =, > 1$

Case 1: Unsuccessful Search (i.e., item not stored in the table)

Theorem An unsuccessful search in a hash table takes expected time $\Theta(1 + \alpha)$ under the assumption of simple uniform hashing (i.e., probability of collision $Pr(h(x)=h(y))$, is $1/N$)

Proof
- Searching unsuccessfully for any key k
 - need to search to the end of the list $T[h(k)]$
- Expected length of the list: $E[n_{h(k)}] = \alpha = n/N$
- Expected number of elements examined in this case is α
- Total time required is:
 - $O(1)$ (for computing the hash function) + α \rightarrow $\Theta(1 + \alpha)$
Case 2: Successful Search

Successful search: $\Theta(1 + \frac{a}{2}) = \Theta(1 + a)$ time on the average

(search half of a list of length a plus $O(1)$ time to compute $h(k)$)

Analysis of Search in Hash Tables

- If N (# of slots) is proportional to n (# of elements in the table):
 - $n = \Theta(N)$
 - $\alpha = n/N = \Theta(N)/N = O(1)$

\implies Searching takes constant time on average
Open Addressing

- If we have enough contiguous memory to store all the keys \(\Rightarrow \) store the keys in the table itself
- No need to use linked lists anymore
- Basic idea:
 - put: if a slot is full, try another one, until you find an empty one
 - get: follow the same sequence of probes
 - remove: more difficult ... (we'll see why)
- Search time depends on the length of the probe sequence!

Generalize hash function notation:

- A hash function contains two arguments now: (i) Key value, and (ii) Probe number
 \[h(k, p) \quad p=0,1,...,N-1 \]
- Probe sequences
 \[[h(k,0), h(k,1), ..., h(k,N-1)] \]
 - Must be a permutation of \(<0,1,...,N-1>\)
 - There are \(N!)\) possible permutations
 - Good hash functions should be able to produce all \(N!)\) probe sequences

Example
\[<1, 5, 9> \]
Common Open Addressing Methods

- Linear probing
- Quadratic probing
- Double hashing

Note: None of these methods can generate more than N^2 different probing sequences!

Linear probing

- Idea: when there is a collision, check the next available position in the table (i.e., probing)
 \[h(k,i) = (h_1(k) + a^i) \mod N \]
 \[i=0,1,2,... \]
- First slot probed: $h_1(k)$
- Second slot probed: $h_1(k) + 1$ ($a = 1$)
- Third slot probed: $h_1(k) + 2$, and so on

- Can generate N probe sequences maximum, why?
 probe sequence: $< h_1(k), h_1(k)+1, h_1(k)+2, >$ wrap around
Linear probing: Searching for a key

- Three cases:
 1. Position in table is occupied with an element of equal key
 2. Position in table is empty
 3. Position in table occupied with a different element

- Case 3: probe the next index until the element is found or an empty position is found

- The process wraps around to the beginning of the table

Search with Linear Probing

- Consider a hash table \(A \) that uses linear probing
- \(\text{get}(k) \)
 - We start at cell \(h(k) \)
 - We probe consecutive locations until one of the following occurs
 - An item with key \(k \) is found, or
 - An empty cell is found, or
 - \(N \) cells have been unsuccessfully probed

Algorithm \(\text{get}(k) \)

\[
\begin{align*}
 i & \leftarrow h(k) \\
 p & \leftarrow 0 \\
 \text{repeat} & \\
 c & \leftarrow A[i] \\
 \text{if } c = \emptyset & \text{ return null} \\
 \text{else if } c.\text{getKey}() = k & \text{ return } c.\text{getValue}() \\
 \text{else } & \\
 i & \leftarrow (i + 1) \mod N \\
 p & \leftarrow p + 1 \\
 \text{until } p = N & \\
 \text{return null}
\end{align*}
\]
Quadratic Probing

\[h(k,i) = (h_1(k) + i^2) \mod N \]

- Probe sequence:
 - \(0^{th}\) probe = \(h(k) \mod N\)
 - \(1^{st}\) probe = \((h(k) + 1) \mod N\)
 - \(2^{nd}\) probe = \((h(k) + 4) \mod N\)
 - \(3^{rd}\) probe = \((h(k) + 9) \mod N\)
 - \(\ldots \)
 - \(i^{th}\) probe = \((h(k) + i^2) \mod N\)

Quadratic Probing Example

<table>
<thead>
<tr>
<th>Insertion</th>
<th>Hash Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(76)</td>
<td>(76 \mod 7 = 6)</td>
</tr>
<tr>
<td>(40)</td>
<td>(40 \mod 7 = 5)</td>
</tr>
<tr>
<td>(48)</td>
<td>(48 \mod 7 = 6)</td>
</tr>
<tr>
<td>(5)</td>
<td>(5 \mod 7 = 5)</td>
</tr>
<tr>
<td>(55)</td>
<td>(55 \mod 7 = 6)</td>
</tr>
</tbody>
</table>

But...

<table>
<thead>
<tr>
<th>Insertion</th>
<th>Hash Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(76)</td>
<td>(76)</td>
</tr>
<tr>
<td>(47)</td>
<td>(47 \mod 7 = 5)</td>
</tr>
</tbody>
</table>
Quadratic Probing:
Success guarantee for $\alpha < \frac{1}{2}$

- If N is prime and $\alpha < \frac{1}{2}$, then quadratic probing will find an empty slot in $N/2$ probes or fewer, because each probe checks a different slot.
 - Show for all $0 \leq i, j \leq N/2$ and $i \neq j$
 $$(h(x) + i^2) \mod N \neq (h(x) + j^2) \mod N$$
 - By contradiction: suppose that for some $i \neq j$:
 $$(h(x) + i^2) \mod N = (h(x) + j^2) \mod N$$
 $$i^2 \mod N = j^2 \mod N$$
 $$i^2 - j^2 \mod N = 0$$
 $$[(i + j)(i - j)] \mod N = 0$$

Because N is prime $(i-j)$ or $(i+j)$ must be zero, and neither can be, a contradiction.

Conclusion: For any $\alpha < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger α, quadratic probing may find a slot.

Double Hashing

(1) Use one hash function to determine the first slot
(2) Use a second hash function to determine the increment for the probe sequence
$$h(k,i) = (h_1(k) + i h_2(k)) \mod N, \quad i=0,1,...$$
- Initial probe: $h_1(k)$
- Second probe is offset by $h_2(k) \mod N$, so on ...
- Advantage: avoids clustering
- Disadvantage: harder to delete an element
- Can generate N^2 probe sequences maximum
Double Hashing: Example

- **Insert key 14:**

 \[h_1(14, 0) = 14 \mod 13 = 1 \]

 \[h(14, 1) = (h_1(14) + h_2(14)) \mod 13 = (1 + 4) \mod 13 = 5 \]

 \[h(14, 2) = (h_1(14) + 2 h_2(14)) \mod 13 = (1 + 8) \mod 13 = 9 \]

Analysis of Open Addressing

- Ignore the problem of clustering and assume that all probe sequences are equally likely

- **Unsuccessful retrieval:**

 \[\text{Prob(probe hits an occupied cell)} = a \quad \text{(load factor)} \]

 \[\text{Prob(probe hits an empty cell)} = 1 - a \]

 probability that a probe terminates in 2 steps: \(a(1 - a) \)

 probability that a probe terminates in \(k \) steps: \(a^{k-1}(1 - a) \)

 What is the average number of steps in a probe?

 \[E(\text{# steps}) = \sum_{k=1}^{m} ka^{k-1}(1 - a) \leq \sum_{k=0}^{\infty} ka^{k-1}(1 - a) = (1 - a) \frac{1}{(1-a)^2} = \frac{1}{1 - a} \]
Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - half full ($\alpha = 0.5$)
 - when an insertion fails
 - some other threshold

- Cost of rehashing?