Ch05 Priority Queues & Heapsort

Priority Queue ADT

- A priority queue stores a collection of elements which have a total order.
- Each element has a key value key(x).
- Main methods of the Priority Queue ADT:
 - `insert(x)` inserts an entry with key k and value x
 - `removeMin()` removes and returns the element with smallest key.
- Additional methods:
 - `min()` returns, but does not remove, an entry with smallest key
 - `size()`
 - `isEmpty()`
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

This is the min-queue. Replace “min” by “max” we obtain the max-queue.
Total Order Relations

- Keys in a priority queue can be arbitrary objects on which an order is defined.
- Every pair of such keys must be comparable according to a total order.

Definition of total order relation \leq

- **Comparability** property: either $x \leq y$ or $y \leq x$
- **Reflexive** property: $x \leq x$
- **Antisymmetric** property: $x \leq y$ and $y \leq x \Rightarrow x = y$
- **Transitive** property: $x \leq y$ and $y \leq z \Rightarrow x \leq z$

Example

- A sequence of priority queue methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Return Value</th>
<th>Priority Queue Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert(5,A)</td>
<td>(3,B)</td>
<td>{ (5,A) }</td>
</tr>
<tr>
<td>insert(9,C)</td>
<td>(3,B)</td>
<td>{ (5,A), (9,C) }</td>
</tr>
<tr>
<td>insert(3,B)</td>
<td>(5,A)</td>
<td>{ (3,B), (5,A), (9,C) }</td>
</tr>
<tr>
<td>min()</td>
<td>(7,D)</td>
<td>{ (5,A), (9,C) }</td>
</tr>
<tr>
<td>removeMin()</td>
<td>(7,D)</td>
<td>{ (5,A), (7,D), (9,C) }</td>
</tr>
<tr>
<td>insert(7,D)</td>
<td>(9,C)</td>
<td>{ (5,A), (9,C) }</td>
</tr>
<tr>
<td>removeMin()</td>
<td>null</td>
<td>{ (9,C) }</td>
</tr>
<tr>
<td>removeMin()</td>
<td></td>
<td>{ }</td>
</tr>
<tr>
<td>removeMin()</td>
<td></td>
<td>{ }</td>
</tr>
<tr>
<td>isEmpty()</td>
<td>true</td>
<td>{ }</td>
</tr>
</tbody>
</table>
Priority Queue Sorting

- We can use a priority max-queue to sort a set of comparable elements
 1. Insert the elements one by one with a series of insert operations
 2. Remove the elements in sorted order with a series of removeMax operations
- The running time of this sorting method depends on the priority queue implementation.

Algorithm \textbf{PQ-Sort}(S, C)

\begin{itemize}
 \item \textbf{Input} sequence S, comparator C for the elements of S
 \item \textbf{Output} sequence S sorted in increasing order according to C
 \item $P \leftarrow$ priority queue with comparator C
 \item while \negS.isEmpty ()
 \begin{itemize}
 \item $e \leftarrow$ S.removeFirst ()
 \item $P.insert (e)$
 \end{itemize}
 \item while \negP.isEmpty()
 \begin{itemize}
 \item $e \leftarrow$ P.removeMax()
 \item S.insertFirst(e)
 \end{itemize}
\end{itemize}

Some Definitions

- \textbf{Internal Sort}
 - The data to be sorted is all stored in the computer’s main memory.

- \textbf{External Sort}
 - Some of the data to be sorted might be stored in some external, slower, device.

- \textbf{In Place Sort}
 - The amount of extra space required to sort the data is $o(n)$, where n is the input size.
Sequence-based Priority Queue

- Implementation with an unsorted list
 - Performance:
 - \(\text{insert}\) takes \(O(1)\) time since we can insert the item at the beginning or end of the sequence.
 - \(\text{removeMax}\) takes \(O(n)\) time since we have to traverse the entire sequence to find the maximal key.

- Implementation with a sorted list
 - Performance:
 - \(\text{insert}\) takes \(O(n)\) time since we have to find the place where to insert the item.
 - \(\text{removeMax}\) takes \(O(1)\) time, since the smallest key is at the beginning.

How does the Priority Queue Sorting behave?

Selection-Sort, Insertion-Sort

- Selection-sort is a variation of PQ-sort where the priority queue is implemented with an unsorted sequence.
 - If an array is used, it can be implemented as in-place selection sort.
- Insertion-sort is a variation of PQ-sort where the priority queue is implemented with a sorted sequence.
 - If an array is used, it can be implemented as in-place insertion sort.
Selection-Sort Example

<table>
<thead>
<tr>
<th>Input</th>
<th>Priority Queue P</th>
<th>Sorted Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7,4,8,2,5,3,9)</td>
<td>(7,4,8,2,5,3)</td>
<td>(9)</td>
</tr>
<tr>
<td>removeMax()</td>
<td>(7,4,2,5,3)</td>
<td>(8,9)</td>
</tr>
<tr>
<td>removeMax()</td>
<td>(4,2,5,3)</td>
<td>(7,8,9)</td>
</tr>
<tr>
<td>removeMax()</td>
<td>(4,2,3)</td>
<td>(5,7,8,9)</td>
</tr>
<tr>
<td>removeMax()</td>
<td>(2,3)</td>
<td>(4,5,7,8,9)</td>
</tr>
<tr>
<td>removeMax()</td>
<td>(2)</td>
<td>(3,4,5,7,8,9)</td>
</tr>
<tr>
<td>removeMax()</td>
<td>()</td>
<td>(2,3,4,5,7,8,9)</td>
</tr>
</tbody>
</table>

Insertion-Sort Example

<table>
<thead>
<tr>
<th>Input</th>
<th>Sequence S</th>
<th>Priority queue P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7,4,8,2,5,3,9)</td>
<td>(4,8,2,5,3,9)</td>
<td>(7)</td>
</tr>
<tr>
<td>insert(7)</td>
<td>(8,2,5,3,9)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>insert(4)</td>
<td>(2,5,3,9)</td>
<td>(4,7,8)</td>
</tr>
<tr>
<td>insert(2)</td>
<td>(5,3,9)</td>
<td>(2,4,7,8)</td>
</tr>
<tr>
<td>insert(5)</td>
<td>(3,9)</td>
<td>(2,4,5,7,8)</td>
</tr>
<tr>
<td>insert(3)</td>
<td>(9)</td>
<td>(2,3,4,5,7,8)</td>
</tr>
<tr>
<td>insert(9)</td>
<td>()</td>
<td>(2,3,4,5,7,8,9)</td>
</tr>
</tbody>
</table>
Balanced Search Tree Based Priority Queue

- Both insert and removeMax can be implemented using $O(\log n)$ time.
- Thus, PQ-sort can run in $O(n \log n)$.
- Can we have an in-place PQ-sort whose complexity is in $O(n \log n)$?
 - Yes, use heaps for PQ.

What is a heap?

- A (max) heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
 - (Max) Heap-Order: for every node v other than the root, $key(v) \leq key(parent(v))$
 - Complete Binary Tree: let h be the height of the heap
 - for $i = 0, \ldots, h - 2$, there are 2^i nodes of depth i
 - at depth $h-1$, the nodes are listed from left to right without gaps.
- The last node of a heap is the rightmost node of depth $h - 1$.

The last node of a heap is the rightmost node of depth $h - 1$.

(last node)
Height of a Heap

- **Theorem:** A heap storing \(n \) keys has height \(O(\log n) \)
- **Proof:** (we apply the complete binary tree property)
 - Let \(h \) be the height of a heap storing \(n \) keys
 - Since there are \(2^i \) keys at depth \(i = 0, \ldots, h - 1 \) and at least one key at depth \(h \), we have \(n \geq 1 + 2 + 4 + \ldots + 2^{h-1} + 1 \)
 - Thus, \(n \geq 2^h \), i.e., \(h \leq \log n \)

<table>
<thead>
<tr>
<th>depth</th>
<th>keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(h-1)</td>
<td>(2^{h-1})</td>
</tr>
<tr>
<td>(h)</td>
<td>1</td>
</tr>
</tbody>
</table>

Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store an item (key, element) at each node
- We keep track of the position of the last node
- For simplicity, we will show only the keys in the pictures

A min-heap:

(5, Pat) (9, Jeff) (7, Anna) (6, Mark) (2, Sue)
Insert into a Heap

- Method `insert` of the priority queue ADT corresponds to the insertion of a key \(k \) to the heap
- The insertion algorithm consists of three steps
 - Find the position for a new node and create a new node \(z \)
 - Store \(k \) at \(z \)
 - Restore the heap-order property by up-heap bubble (discussed next)

Up-Heap Bubbling

- After the insertion of a new key \(k \), the heap-order property may be violated
- Algorithm `up-heap-bubble` restores the heap-order property by swapping \(k \) along an upward path from the insertion node
- `Up-heap-bubble` terminates when the key \(k \) reaches the root or a node whose key is greater than or equal to \(k \)
- Since a heap has height \(O(\log n) \), `up-heap-bubble` runs in \(O(\log n) \) time
removeMax from a Heap

- Method **removeMax** of the priority queue ADT corresponds to the removal of the root key from the heap.
- The removal algorithm consists of three steps:
 - Replace the root key with the key of the last node \(w \).
 - Release node \(w \).
 - Restore the heap-order property by **down-heap-bubble** (discussed next).

Down-heap bubbling (Heapify)

- After replacing the root key with the key \(k \) of the last node, the heap-order property may be violated.
- Algorithm **down-heap-bubble** (or heapify) restores the heap-order property by swapping key \(k \) along a downward path from the root.
- **Down-heap-bubble** terminates when key \(k \) reaches a leaf or a node whose key is less than or equal to \(k \).
- Since a heap has height \(O(\log n) \), **down-heap-bubble** runs in \(O(\log n) \) time.
Heap-Sort

- Consider a priority queue with \(n \) items implemented by means of a max-heap
 - The input and the heap can share the array, so the additional space used is \(O(1) \)
 - Methods \texttt{insert} and \texttt{removeMax} take \(O(\log n) \) time.

- Using a heap-based priority queue, we can sort a sequence of \(n \) elements in \(O(n \log n) \) time
- It can be implemented in-place (\(O(1) \) additional space).
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort, when \(n \) is very large.

Array-based Heap Implementation

- We can represent a heap with \(n \) keys by means of an array of length \(n \).
- For the node at index \(i \)
 - the left child is at index \(2i+1 \)
 - the right child is at index \(2i+2 \)
- Links between nodes are not explicitly stored
- The (first portion of) input array \(A \) is used as heap.
- In-place (no additional array is needed) heap-sort:
 - For \(k = 1 \) to \(n-1 \)
 \(A\.\text{insert}(A[k]); \)
 - For \(k = \text{n-1} \) down to \(1 \)
 \(A[k] = A\.\text{removeMax}(); \)
- Time Complexity: \(O(n \log n) \)
Possible Quiz Questions

- Show the contents of the following arrays during the heap sort whenever there is a change.
 - A = [1, 2, 4, 3]
 - B = [3, 4, 2, 1]
 - C = [4, 1, 2, 3]

Bottom-up Heap Construction

- We can construct a heap storing n given keys using a bottom-up construction with $\log n$ phases, so that the time of building a heap of n elements is $O(n)$, instead of $O(n \log n)$.
- The process is divided into $\log n$ phases.
- In phase i, pairs of heaps with 2^i-1 keys plus one item are merged into heaps with $2^{i+1}-1$ keys.
Merging Two (Min) Heaps

- We are given two heaps and a key \(k \)
- We create a new heap with the root node storing \(k \) and with the two heaps as subtrees
- We perform down-heap-bubble to restore the heap-order property

Example of Max Heap

\[A = [10, 7, 8, 25, 5, 11, 27, 16, 15, 4, 12, 6, 7, 23, 20] \]
Example (contd.)

Example (contd.)

25

26
Building a Heap

- Convert an array $A[0 ... n-1]$ into a max-heap ($n = \text{length}[A]$)
- The elements in the subarray $A[\lfloor n/2 \rfloor .. n-1]$ are leaves
- Apply MaxHeapify on elements between 0 and $\lfloor n/2 \rfloor$ - 1

Alg. BuildMaxHep(A)

1. $n = \text{length}[A]$
2. for $i \leftarrow \lfloor n/2 \rfloor$ - 1 downto 0
3. do MaxHeapify(A, i, n)

A: 4 1 3 2 16 9 10 14 8 7
Maintaining the Heap Property

Assumptions:
- Left and Right subtrees of \(i \) are max-heaps
- \(A[i] \) may be smaller than its children

Algorithm: MaxHeapify(A, i, n)
1. \(l \leftarrow \text{Left}(i) \); // Left(i) = 2i+1
2. \(r \leftarrow \text{Right}(i) \); // Right(i) = 2i+2
3. \(\text{max} \leftarrow i \);
4. if \(l < n \&\& A[l] > A[\text{max}] \) \(\text{max} \leftarrow l \);
5. if \(r < n \&\& A[r] > A[\text{max}] \) \(\text{max} \leftarrow r \);
6. if \(\text{max} \neq i \) {
7. exchange \(A[i] \leftrightarrow A[\text{max}] \);
8. MaxHeapify(A, max, n);
9. }

Running Time of BUILD MAX HEAP

Algorithm: BuildMaxHeap(A)
1. \(n = \text{length}[A] \)
2. for \(i \leftarrow \lfloor n/2 \rfloor - 1 \) downto 0
3. do MaxHeapify(A, i, n) \(O(lgn) \) \(O(n) \)

\[\Rightarrow \text{Running time: } O(n \ lgn) \]

- This is not an asymptotically tight upper bound
Analysis

- We visualize the worst-case time of a heapify (or bubble-down) with a given path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual heapify path).
- Since each edge is traversed by at most once by these paths, the total length of these paths is $O(n)$.
- Thus, bottom-up heap construction runs in $O(n)$ time.
- Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort.

Running Time of BUILD MAX HEAP

MaxHeapify takes $O(h)$, so the cost of MaxHeapify on a node i is proportional to the height of the node i in the tree:

$$T(n) = \sum_{i=0}^{h} n_i h_i = \sum_{i=0}^{h} 2^i (h - i) = O(n)$$

<table>
<thead>
<tr>
<th>Height h_i</th>
<th>Level i</th>
<th>No. of nodes n_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_0 = 3 \lfloor \log n \rfloor$</td>
<td>$i = 0$</td>
<td>2^0</td>
</tr>
<tr>
<td>$h_1 = 2$</td>
<td>$i = 1$</td>
<td>2^1</td>
</tr>
<tr>
<td>$h_2 = 1$</td>
<td>$i = 2$</td>
<td>2^2</td>
</tr>
<tr>
<td>$h_3 = 0$</td>
<td>$i = 3 \lfloor \log n \rfloor$</td>
<td>2^3</td>
</tr>
<tr>
<td>$h_i = h - i$</td>
<td>height of the heap rooted at level i</td>
<td></td>
</tr>
<tr>
<td>$n_i = 2^i$</td>
<td>number of nodes at level i</td>
<td></td>
</tr>
</tbody>
</table>
Running Time of BUILD MAX HEAP

\[T(n) = \sum_{i=0}^{\log_2 n} n_i h_i \]

Cost of MaxHeapify at level i * number of nodes at that level

\[= \sum_{i=0}^{\log_2 n} 2^i (h - i) \]

Replace the values of \(n_i \) and \(h_i \) computed before

\[= \sum_{i=0}^{\log_2 n} \frac{h - i}{2^{h-i}} \]

Multiply by \(2^h \) both at the nominator and denominator and write \(2^i \) as \(\frac{1}{2^{i-h}} \)

\[= 2^h \sum_{k=0}^{\log_2 n} \frac{k}{2^k} \]

Change variables: \(k = h - i \)

\[\leq n \sum_{k=0}^{\log_2 n} \frac{k}{2^k} \]

The sum above is smaller than the sum of all elements to \(\infty \)

\[= O(n) \]

The sum above is smaller than 2

Running time of BuildMaxHeap: \(T(n) = O(n) \)

HeapSort(A)

- Convert an array \(A[0 \ldots n-1] \) into a max-heap
 - The elements in the subarray \(A[\lceil n/2 \rceil \ldots n-1] \) are leaves.
 - Apply MaxHeapify on elements between 0 and \(\lfloor n/2 \rfloor - 1 \)
- Repeatedly swap the max heap element with the last unsorted element and call MaxHeapify to maintain the heap property.

Alg: HeapSort(A) {
1. \(n = A.length; \)
2. \(\text{for } i \leftarrow \lfloor n/2 \rfloor - 1 \text{ downto } 0 \)
3. \(\text{MaxHeapify}(A, i, n); \)
4. \(\text{for } i \leftarrow n - 1 \text{ downto } 1 \{ \) // \(A[0..i] \) is a max heap
5. \(\text{exchange } A[i] \rightarrow A[0]; \)
6. \(\text{MaxHeapify}(A, 0, i); \) // \(A[i..n-1] \) is sorted with max \((n-i) \)
7. \(\} \) // elements of the original array.
Example: \(A = [7, 4, 3, 1, 2] \)

Possible Quiz Questions

- Show the contents of the following arrays during the heap sort whenever there is a change, when the bottom-up heap construction is used.
 - \(A = [1, 2, 4, 3] \)
 - \(B = [3, 4, 2, 1] \)
 - \(C = [4, 1, 2, 3] \)
Stability

A stable sort preserves relative order of records with equal keys.

Sorted on first key:

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austin</td>
<td>504-430-0023</td>
<td>607 Little</td>
</tr>
<tr>
<td>Austin</td>
<td>574-058-1212</td>
<td>121 Main</td>
</tr>
<tr>
<td>Battle</td>
<td>591-070-4044</td>
<td>308 Blair</td>
</tr>
<tr>
<td>Chen</td>
<td>247-212-5141</td>
<td>128 Finkle</td>
</tr>
<tr>
<td>Fox</td>
<td>247-456-9094</td>
<td>191 Green</td>
</tr>
<tr>
<td>Fura</td>
<td>702-055-5873</td>
<td>32 Brown</td>
</tr>
<tr>
<td>Gossi</td>
<td>665-301-0266</td>
<td>133 Walker</td>
</tr>
<tr>
<td>Managi</td>
<td>899-122-9643</td>
<td>384 Fuhrer</td>
</tr>
<tr>
<td>Nolde</td>
<td>232-341-5555</td>
<td>115 Nolde</td>
</tr>
<tr>
<td>Quilici</td>
<td>343-585-6642</td>
<td>31 McHawk</td>
</tr>
</tbody>
</table>

Sort file on second key:

Records with key value 3 are not in order on first key!!

Summary

- A priority queue stores a collection of items.
- Each item has a key value.
- Main methods of the Priority Queue ADT:
 - `insert(x)` inserts an item x
 - `removeMax()` (or `removeMin()`)
 removes and returns the item with max (or smallest) key
- Using an array-based priority queue, each insert and removeMax can be implemented in $O(\log n)$.
- For Heap Sort, we create an array-based max heap in $O(n)$ and each removeMax takes $O(\log n)$, so the total time is $O(n \log n)$.
- Heap Sort is a non-stable, in-place, optimal sorting method.