Why care about advanced implementations?

Same entries, different insertion sequence:

→ Not good! Would like to keep tree balanced.
Balanced binary tree

- The disadvantage of a binary search tree is that its height can be as large as N-1.
- This means that the time needed to perform insertion and deletion and many other operations can be O(N) in the worst case.
- We want a tree with small height.
- A binary tree with N node has height at least $\Theta(\log N)$.
- Thus, our goal is to keep the height of a binary search tree $O(\log N)$.
- Such trees are called balanced binary search trees. Examples are AVL tree, and red-black tree.

Approaches to balancing trees

- Don't balance
 - May end up with some nodes very deep.
- Strict balance
 - The tree must always be balanced perfectly.
- Pretty good balance
 - Only allow a little out of balance.
- Adjust on access
 - Self-adjusting.
Balancing Search Trees

- Many algorithms exist for keeping search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
 - Red-black trees (black nodes balanced trees)
 - Splay trees and other self-adjusting trees
 - B-trees and other multiway search trees

Perfect Balance

- Want a complete tree after every operation
 - Each level of the tree is full except possibly in the bottom right
- This is expensive
 - For example, insert 2 and then rebuild as a complete tree

![Diagram showing insertion and rebalancing](image-url)
AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- Balance factor of a node
 - height(left subtree) - height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1
 - Store current heights in each node

Height of an AVL Tree

- \(N(h) = \text{minimum number of nodes in an AVL tree of height } h. \)
- Basic case:
 - \(N(0) = 1, N(1) = 2 \)
- Inductive case:
 - \(N(h) = N(h-1) + N(h-2) + 1 \)
- Theorem (from Fibonacci analysis)
 - \(N(h) \geq \phi^h \)
 - where \(\phi \approx 1.618 \), the golden ratio.
Height of an AVL Tree

- $N(h) > \phi^h$ ($\phi \approx 1.618$)
- Suppose we have n nodes in an AVL tree of height h.
 - $n \geq N(h)$ (because $N(h)$ was the minimum)
 - $n > \phi^h$ hence $\log_\phi n > h$ (relatively well balanced tree!!)
 - $h < 1.44 \log_2 n$ (i.e., Find takes $O(\log n)$)

Node Heights

Tree A (AVL)
- height = 2
- BF = 1 - 0 = 1

Tree B (AVL)
- height = 2
- BF = 1 - 0 = 1

height of node = h
balance factor = $h_{\text{left}} - h_{\text{right}}$
empty height = -1
Node Heights after Insert 7

height of node = \(h \)
balance factor = \(h_{\text{left}} - h_{\text{right}} \)
empty height = -1

Tree A (AVL)
Tree B (not AVL)

Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or -2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference \(h_{\text{left}} - h_{\text{right}} \)) is 2 or -2, adjust tree by rotation around the node
Let the node that needs rebalancing be α.

There are 4 cases:

- **Outside Cases** (require single rotation):
 1. Insertion into left subtree of left child of α. (left-left)
 2. Insertion into right subtree of right child of α. (right-right)

- **Inside Cases** (require double rotation):
 3. Insertion into right subtree of left child of α. (left-right)
 4. Insertion into left subtree of right child of α. (right-left)

The rebalancing is performed through four separate rotation algorithms.
Consider a valid AVL subtree

AVL Insertion: Outside Case

Inserting into X destroys the AVL property at node j
AVL Insertion: Outside Case

Single right rotation
Outside Case Completed

“Right rotation” done! ("Left rotation" is mirror symmetric)

AVL property has been restored!

AVL Insertion: Inside Case

Consider a valid AVL subtree
AVL Insertion: Inside Case

Inserting into Y destroys the AVL property at node j

Does "right rotation" restore balance?

"One rotation" does not restore balance... now k is out of balance
Consider the structure of subtree Y...

AVL Insertion: Inside Case

$Y = \text{node i and subtrees V and W}$
AVL Insertion: Inside Case

We will do a left-right "double rotation" . . .

Double rotation: first rotation

left rotation complete
Double rotation: second rotation

Now do a right rotation

Double rotation: second rotation

right rotation complete

Balance has been restored
Implementation

Once you have performed a rotation (single or double) you won’t need to go back up the tree.

Class BinaryNode

KeyType: Key
int: Height
BinaryNode: LeftChild
BinaryNode: RightChild

Constructor(KeyType: key)
Key = key
Height = 0
End Constructor
End Class

rotateToRight(G)

Relative to G, X is at left-left positions.
rotateToRight(G) will exchange of roles between G and P, so P becomes G's parent.
After rotateToRight(G)

rotateToLeft(G) will handle the case when X is at right-right position relative to G.

Java-like Pseudo-Code

rotateToRight(BinaryNode: x) {
 BinaryNode y = x.LeftChild;
 x.LeftChild = y.RightChild;
 y.RightChild = x;
 return y;
}
Java-like Pseudo-Code

```java
rotateToLeft( BinaryNode: x ) {
    BinaryNode y = x.rightChild;
    x.rightChild = y.leftChild;
    y.leftChild = x;
    return y;
}
```

Double Rotation

- Implement Double Rotation in two lines.

```java
DoubleRotateToLeft(n : binaryNode) {
    rotateToRight(n.rightChild);
    rotateToLeft(n);
}

DoubleRotateToRight(n : binaryNode) {
    rotateToLeft(n.leftChild);
    rotateToRight(n);
}
```
Insertion in AVL Trees

- Insert at the leaf (as for all BST)
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference $h_{left} - h_{right}$) is 2 or -2, adjust tree by rotation around the node

Insert in ordinary BST

Algorithm $\text{insert}(k, v)$

- input: insert key k into the tree rooted by v
- output: the tree root with k adding to v.
- if $\text{isNull}(v)$
 - return $\text{newNode}(k)$
- if $k \leq \text{key}(v)$ // duplicate keys are okay
 - $\text{leftChild}(v) \leftarrow \text{insert}(k, \text{leftChild}(v))$
- else if $k > \text{key}(v)$
 - $\text{rightChild}(v) \leftarrow \text{insert}(k, \text{rightChild}(v))$
- return v
Insert in AVL trees

Insert(v : binaryNode, x : element) :
 if v = null then
 {v  new node; v.data  x; height  0;}
 else case
 v.data = x : ; //Duplicate do nothing
 v.data > x : v.leftChild  Insert(v.leftChild, x);
 // handle left-right and left-left cases
 if ((height(v.leftChild)- height(v.rightChild)) = 2) then
 if (v.leftChild.data > x) then //outside case
 v = RotateToRight (v);
 else //inside case
 v = DoubleRotateToRightt (v);}
 v.data < x : v.righChild  Insert(v.rightChild, x);
 // handle right-right and right-left cases

 Endcase
 v.height  max(height(v.left),height(v.right)) +1;
 return v;
Example of Insertions in an AVL Tree

Now Insert 45

Single rotation (outside case)

Now Insert 34
Double rotation (inside case)

AVL Tree Deletion

- Similar but more complex than insertion
 - Rotations and double rotations needed to rebalance
 - Imbalance may propagate upward so that many rotations may be needed.
Deletion

- Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent may have an imbalance.

- Example:

Rebalancing after a Removal

Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.

- We perform a rotateToRight to restore balance at z.
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached.
Deletion in standard BST

Algorithm `remove(k, v)`

- **input**: delete the node containing key `k`
- **output**: the tree without `k`

1. if `isNull(v)`
 - return `v`
2. if `k < key(v)` // duplicate keys are okay
 - `leftChild(v) ← remove(k, leftChild(v))`
3. else if `k > key(v)`
 - `rightChild(v) ← remove(k, rightChild(v))`
4. else if `isNull(leftChild(v))`
 - return `rightChild(v)`
5. else if `isNull(rightChild(v))`
 - return `leftChild(v)`
6. `node max ← treeMaximum(leftChild(v))`
7. `key(v) ← key(min)`
8. `rightChild(v) ← remove(key(min), rightChild(v))`
9. return `v`

Deletion in AVL Trees

Algorithm `remove(k, v)`

- **input**: delete the node containing key `k`
- **output**: the tree without `k`

1. if `isNull(v)`
 - return `v`
2. if `k < key(v)` // duplicate keys are okay
 - `leftChild(v) ← remove(k, leftChild(v))`
3. else if `k > key(v)`
 - `rightChild(v) ← remove(k, rightChild(v))`
4. else if `isNull(leftChild(v))`
 - return `rightChild(v)`
5. else if `isNull(rightChild(v))`
 - return `leftChild(v)`
6. `node max ← treeMaximum(leftChild(v))`
7. `key(v) ← key(max)`
8. `leftChild(v) ← remove(key(max), leftChild(v))`
9. `AVLbalance(v)`
10. return `v`

AVLbalance(v)

Assume the height is updated in rotations.

1. if `(v.left.height > v.right.height + 1)`
 - `y = v.left`
 - if `(y.right.height > y.left.height)`
 - `DoubleRotateToLeft(v)`
 - else `rotateToRight(v)`
2. if `(v.right.height > v.left.height + 1)`
 - `y = v.right`
 - if `(y.left.height > y.right.height)`
 - `DoubleRotateToRight(v)`
 - else `rotateToLeft(v)`
AVL Tree Example:

• Now remove 53
AVL Tree Example:
- Balanced!

Now try Remove 11

AVL Tree Example:
- Remove 11, replace it with the largest, i.e., 8, in its left branch.

Now try Remove 8.
AVL Tree Example:

- Remove 8, unbalanced
AVL Tree Example:
• Balanced!!

In Class Exercises
- Build an AVL tree with the following values:
 15, 20, 24, 10, 13, 7, 30, 36, 25
Deletion in AVL Trees

Algorithm \textit{remove}(k, v)
\begin{itemize}
\item \textbf{input:} delete the node containing key \(k\)
\item \textbf{output:} the tree without \(k\).
\end{itemize}
\begin{verbatim}
if isNull (v)
 return v
if \(k < \text{key}(v)\) // duplicate keys are okay
 leftChild(v) \leftarrow \text{remove}(k, \text{leftChild}(v))
else if \(k > \text{key}(v)\)
 rightChild(v) \leftarrow \text{remove}(k, \text{rightChild}(v))
else if isNull(leftChild(v))
 return rightChild(v)
else if isNull(rightChild(v))
 return leftChild(v)
node max \leftarrow \text{treeMaximum}(\text{leftChild}(v))
key(v) \leftarrow \text{key}(max)
leftChild(v) \leftarrow \text{remove}(\text{key}(max), \text{leftChild}(v))
\text{return AVLbalance}(v)
\end{verbatim}

\textit{AVLbalance}(v) \{
Assume the height is updated in rotations.
\begin{verbatim}
if (v.left.height > v.right.height+1) \{
 y = v.left
 if (y.right.height > y.left.height)
 v = \text{DoubleRotateToRight}(v)
 else v = \text{rotateToRight}(v)
\}\}
\begin{verbatim}
if (v.right.height > v.left.height+1) \{
 y = v.right
 if (y.left.height > y.right.height)
 v = \text{DoubleRotateToLeft}(v)
 else v = \text{rotateToLeft}(v)
\}\}
\text{return v}
\end{verbatim}
\}
Remove 24 and 20 from the AVL tree.

AVL Tree Performance

- AVL tree storing n items
 - The data structure uses $O(n)$ space
 - A single restructuring takes $O(1)$ time
 - using a linked-structure binary tree
 - Searching takes $O(\log n)$ time
 - height of tree is $O(\log n)$, no restructures needed
 - Insertion takes $O(\log n)$ time
 - initial find is $O(\log n)$
 - restructuring up the tree, maintaining heights is $O(\log n)$
 - Removal takes $O(\log n)$ time
 - initial find is $O(\log n)$
 - restructuring up the tree, maintaining heights is $O(\log n)$
Pros and Cons of AVL Trees

Arguments for AVL trees:
1. Search is $O(\log N)$ since AVL trees are always balanced.
2. Insertion and deletions are also $O(\log n)$
3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for height.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
4. May be OK to have $O(N)$ for a single operation if the total run time for many consecutive operations is fast (e.g. Splay trees).

Red-Black Tree

- A red-black tree is a binary search such that each node has a color of either red or black.
- The root is black.
- Empty (or null) nodes are assumed black.
- Every path from a node to a leaf contains the same number of black nodes.
- If a node is red then its parent must be black.

Class BinaryNode

- KeyType: Key
- Boolean: isRed
- BinaryNode: LeftChild
- BinaryNode: RightChild

Constructor(KeyType: key)

- Key = key
- isRed = true

End Constructor
End Class
The root is black.
The parent of any red node must be black.

Theorem: Any red-black tree with root x, has $n \geq 2^{h/2} - 1$ nodes, where h is the height of tree rooted by x.

Proof: We repeatedly replace the subtree rooted by a red node by one of its children.

Let the height of the new tree be h', then $h' \geq h/2$, because the number of red nodes in any path is no more than the number of black nodes.

The new tree is a perfect binary tree, because it has the same of nodes from the root to any leaf. It must have $2^{h'} - 1$ nodes.

So $h \leq 2\log(n+1)$.

Example

- The root is black.
- The parent of any red node must be black.
Maintain the Red Black Properties in a Tree

- **Insertions**
 - Must maintain rules of Red Black Tree.
 - New Node always added at leaf
 - can't be black or we will violate rule of the same # of blacks along any path
 - therefore the new node must be red
 - If parent is black, done (trivial case)
 - If parent red, things get interesting because a red node with a red parent violates no double red rule.

Algorithm: Insertion

A red-black tree is a particular binary search tree, so create a new node as red and insert it as in normal search tree.

Violation!

What property is violated? The parent of a red node must be black.

Solution: (1) Rotate; (2) Switch colors.
Example of Inserting Sorted Numbers

1 2 3 4 5 6 7 8 9 10

Insert 1. A leaf is red. Realize it is root so recolor to black.

1

Insert 2

make 2 red. Parent is black so done.

1

2
Insert 3

Insert 3. Parent is red.
2’s uncle, i.e., the sibling of the parent of 2, is black (null).
3 is outside relative to grandparent. Rotate parent and grandparent.

Insert 4

When adding 4 parent is red.
4 has a red uncle (1).
So switch the great parent (2)’s color with parent and uncle.
2 is set to black if it’s the root.
Insert 5

5's parent is red.
5’s uncle is black (null).
5 is outside relative to
grandparent (3) so rotate
parent and grandparent then recolor

Finish insert of 5
Insert 6

6 has a red uncle (3).
So switch the grandparent (4)’s color with parent (5) and uncle (3).

Finishing insert of 6

4’s parent is black so done.
7's parent is red. Parent's sibling is black (null). 7 is outside relative to grandparent (5) so rotate parent and grandparent then recolor.
8’s parent is red and its uncle (5) is also red. Switching the color of 6 with 5 and 7 creates a problem because 6’s parent, 4, is also red. Must handle the red-red violation at 6.

6’s uncle (1) is black. So rotate and recolor.

8’s parent is red and its uncle (5) is also red. Switching the color of 6 with 5 and 7 creates a problem because 6’s parent, 4, is also red. Must handle the red-red violation at 6.
Finish inserting 8

Insert 9
After rotations and recoloring

10 has a red uncle. Grandparent (8) switch colors with parent (9) and uncle (7).
8 has a red uncle (2). Grandparent (4) switch colors with parent (2) and uncle (6). 4 is recolored black as root.

Finishing Insert 10

83

84
We have detected a need for balance when X is red and its parent, too.

- If X has a red uncle: colour the parent and uncle black, and grandparent red. Then replace X by grandparent to see if new X’s parent is red.
Algorithm: Insertion

We have detected a need for balance when X is red and his parent too.

- If X has a red uncle: colour the parent and uncle black, and grandparent red. Then replace X by grandparent to see if new X’s parent is red.
- If X is a left child and has a black uncle: colour the parent black and the grandparent red, then rotateToRight(X,parent, parent)
Algorithm: Insertion

We have detected a need for balance when X is red and his parent too.

- If X has a red uncle: colour the parent and uncle black, and grandparent red. Then replace X by grandparent to see if X’s parent is red.
- If X is a right child and has a black uncle: colour the parent black and the grandparent red, then rotateToRight(X.\text{parent.parent})
- If X is a left child and has a black uncle: colour the parent black and the grandparent red, then rotateToRight(X.\text{parent.parent})
Algorithm: Insertion

We have detected a need for balance when X is red and his parent too.

- If X has a red uncle: colour the parent and uncle black, and grandparent red. Then replace X by grandparent to see if X's parent is red.
- If X is a right child and has a black uncle, then rotateLeft(X.parent) and
- If X is a left child and has a black uncle: colour the parent black and the grandparent red, then rotateRight(X.parent.parent)

Double Rotation

- What if X is at left right relative to G?
 - a single rotation will not work
- Must perform a double rotation
 - rotate X and P
 - rotate X and G
After Double Rotation

Double rotation is also needed when \(X \) is at right left position relative to \(G \).

Properties of Red Black Trees

- If a Red node has any children, it must have two children and they must be black. (Why?)
- If a black node has only one child, that child must be a Red leaf. (Why?)
- Due to the rules there are limits on how unbalanced a Red Black tree may become.
Red Black Trees vs AVL Trees

- AVL trees provide **faster lookups** than Red Black Trees because they are more strictly balanced.
- Red Black Trees provide **faster insertion and removal** operations than AVL trees as fewer rotations are done due to relatively relaxed balancing.
- AVL trees store **balance factors or heights** with each node, thus requires storage for an integer per node whereas Red Black Tree requires only 1 bit of information per node.

Splay Trees

![Splay Tree Diagram]
Motivation for Splay Trees

Problems with AVL Trees
- extra storage/complexity for height fields
- ugly delete code

Solution: splay trees
- blind adjusting version of AVL trees
- amortized time for all operations is $O(\log n)$
- worst case time is $O(n)$
- insert/find always rotates node to the root!

Splay Tree Idea

You’re forced to make a really deep access:

Since you’re down there anyway, fix up a lot of deep nodes!
Splaying Cases

Node n being accessed is:
- Root
- Child of root
- Has both parent (p) and grandparent (g)
 Zig-zig pattern: g → p → n is left-left or right-right (outside nodes)
 Zig-zag pattern: g → p → n is left-right or right-left (inside nodes)

Access root:
Do nothing (that was easy!)
Access child of root:
Zig (AVL single rotation)

Access (LR, RL) grandchild:
Zig-Zag (AVL double rotation)
Access (LL, RR) grandchild: Zig-Zig

Rotate top-down – why?

Splaying Example:
Find(6)

zig-zig
... still splaying ...

... 6 splayed out!
Splay it Again!

Find (4)

Find(4)

... 4 splayed out!
Splay Tree Definition

- A **splay tree** is a binary search tree where a node is splayed after it is accessed (for a search or update)
 - deepest internal node accessed is splayed
 - splaying costs $O(h)$, where h is height of the tree – which is still $O(n)$ worst-case
 - $O(h)$ rotations, each of which is $O(1)$

Splay Trees do Rotations after Every Operation (Even Search)

- new operation: **splay**
 - splaying moves a node to the root using rotations

- **right rotation**
 - makes the left child x of a node y into y's parent; y becomes the right child of x

- **left rotation**
 - makes the right child y of a node x into x's parent; x becomes the left child of y
Splay Trees

Visualizing the Splaying Cases

111

Splaying:

- "x is a left-left grandchild" means x is a left child of its parent, which is itself a left child of its parent
- p is x's parent; g is p's parent

start with node x

is x the root?

yes stop

no

is x a child of the root?

yes

is x the left child of the root?

yes zig zig

right-rotate about the root

no

is x a left-right grandchild?

yes zig-zag

right-rotate about g, left-rotate about p

no

is x a right-right grandchild?

yes zig-zig

right-rotate about g, right-rotate about p

no

left-rotate about g, left-rotate about p

is x a right-left grandchild?

yes zig-zag

left-rotate about p, right-rotate about g

no

112

111
Splay Tree Operations

- Which nodes are splayed after each operation?

<table>
<thead>
<tr>
<th>method</th>
<th>splay node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for k</td>
<td>if key found, use that node</td>
</tr>
<tr>
<td></td>
<td>if key not found, use parent of ending external node</td>
</tr>
<tr>
<td>Insert ((k,v))</td>
<td>use the new node containing the entry inserted</td>
</tr>
<tr>
<td>Remove item</td>
<td>use the predecessor of the node to be removed</td>
</tr>
<tr>
<td>with key (k)</td>
<td></td>
</tr>
</tbody>
</table>

Why Splaying Helps

- If a node \(n\) on the access path is at depth \(d\) before the splay, it's at about depth \(d/2\) after the splay
 - Exceptions are the root, the child of the root, and the node splayed

- Overall, nodes which are below nodes on the access path tend to move closer to the root

- Splaying gets amortized \(O(\log n)\) performance. (Maybe not now, but soon, and for the rest of the operations.)
Splay Operations: Find

- Find the node in normal BST manner
- Splay the node to the root

Splay Operations: Insert

- Ideas?
- Can we just do BST insert?
Digression: Splitting

- Split(T, x) creates two BSTs L and R:
 - all elements of T are in either L or R (\(T = L \cup R \))
 - all elements in L are \(\leq x \)
 - all elements in R are \(\geq x \)
 - L and R share no elements (\(L \cap R = \emptyset \))

Splitting in Splay Trees

- How can we split?
 - We have the splay operation.
 - We can find x or the parent of where x should be.
 - We can splay it to the root.
 - Now, what’s true about the left subtree of the root?
 - And the right?
void insert(Node root, Object x) {
 <left, right> = split(root, x);
 root = newNode(x, left, right);
}
Splay Operations: Delete

1. `find(x)`
2. `delete x` (splay on the maximum element in `L` and attach `R`)

Now what?

Join

`Join(L, R)`: given two trees such that `L < R`, merge them

Splay on the maximum element in `L`, then attach `R`
Delete Completed

T

find(x)

L

x

R

delete x

L < x

R > x

Join(L,R)

T - x

Insert Example

Insert(5)

split(5)

1 2 3 4 5 6 7 8 9

123

124
Delete Example

Find max

Splay Tree Summary

Can be shown that any m consecutive operations starting from an empty tree take at most O(m log(n)), where n is the total number of elements in the tree.

→ All splay tree operations run in amortized O(log n) time

O(N) operations can occur, but splaying makes them infrequent

Implements most-recently used (MRU) logic

- Splay tree structure is self-tuning
Splay Tree Summary (cont.)

Splaying can be done top-down; better because:
- only one pass
- no recursion or parent pointers necessary

There are alternatives to split/insert and join/delete

Splay trees are very effective search trees
- relatively simple: no extra fields required
- excellent locality properties:
 - frequently accessed keys are cheap to find (near top of tree)
 - infrequently accessed keys stay out of the way (near bottom of tree)

Amortized Analysis of Splay Trees

- Running time of each operation is proportional to time for splaying.
- Define rank(v) as the logarithm (base 2) of the number of nodes in subtree rooted at v:
 - rank(v) = log n(v) if null for external nodes
 - rank(v) = log (2n(v)+1) if empty nodes for externals.
- Costs: zig = $1, zig-zig = $2, zig-zag = $2.
- Thus, cost for splaying a node at depth d = $d.
- Imagine that we store rank(v) cyber-dollars at each node v of the splay tree (just for the sake of analysis).
- The total counter values is rank(T) = sum of rank(v) for any node v in T.