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Ch 02 Data Structures

Presentation for use with the textbook Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

xkcd “Seven” http://xkcd.com/1417/
Used with permission under Creative Commons 2.5 License

What is Bitwise Structure?
 The smallest type in Java (or C++) is of 8 bits 

(char). 
 Sometimes we need only a single bit.
 For instance, storing the status of the lights in 8 

rooms: 
 We need to define an array of at least 8 chars. 

If the light of room 3 is turned on the value of 
the third char is 1, otherwise 0.

 Total array of 64 bits.
EXPENSIVE in place and time!!!

1

2



Lists and Iterators 9/10/2019

2

What is Bitwise Structure?
 It is better to define only 8 bits since a bit can also store the 

values 0 or 1.
 But the problem is that there is no data type which is 

1 bit long (char is the longer with 1 byte).
 Solution: define a char (8 bits) but refer to each bit 

separately.
 Bitwise operators, introduced by many languages, provide 

one of its more powerful tools for using and manipulating 
memory. They give the language the real power of a “low-
level language”.

What is Bitwise Structure?
 Accessing bits directly is fast and efficient, especially 

if you are writing a real-time application.
 A single bit cannot be accessed directly, 

since it has no address of its own.
 The language introduces the bitwise operators, 

which help in manipulating a 
single bit of a byte.

 bitwise operators may be used on integral types 
only.

 https://www.programiz.com/java-
programming/bitwise-operators
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Unary and binary operations

Logical operations
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Truth tables of logical operations

Bitwise Operators in Java

& bitwise AND 
| bitwise OR
^ bitwise XOR
~ 1’s compliment

<< Shift left
>> Shift right

All these operators can be suffixed with =
For instance a &= b; is the same as a = a & b;
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Bitwise Operators – truth table

~aa^ba|ba&bba

100000

111010

011001

001111

NOT operator
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Use the NOT operator on one byte

Example
Target  x = 1 0 0 1 1 0 0 0 NOT

------------------
Result              ~x = 0 1 1 0 0 1 1 1

AND operator
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Use the AND operator on two bytes

Example
Target  x = 1 0 0 1 1 0 0 0 AND

y = 0 0 1 1 0 1 0 1
------------------

Result           x&y = 0 0 0 1 0 0 0 0

Figure 4-8
Inherent rule of the AND operator
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OR operator

Use the OR operator on two bytes

Example
Target  x = 1 0 0 1 1 0 0 0 OR

y = 0 0 1 1 0 1 0 1
------------------

Result             x|y = 1 0 1 1 1 1 0 1
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XOR operator

Use the XOR operator on two bytes

Example
Target  x = 1 0 0 1 1 0 0 0 XOR

y = 0 0 1 1 0 1 0 1
------------------

Result            x^y = 1 0 1 0 1 1 0 1
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Exercise A-1.11
Given an array, A, of n positive integers, each of which 
appears in A exactly twice, except for one integer, x, 
describe an O(n)-time method for finding x using only a 
single variable besides A.

Shift operations
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Examples

Let x be byte 00111011 which represents 59. 
Then (x >> 1) is 00011101, which is 29 = 59/2. 

(x << 1) is 01110110, which is 118 = 59*2.

(x >> 2) is 00001110, which is 14 = 59/4.

(x << 2) is 11101100, which is 236 = 59*4.

Divide or multiply a number by a power of 2 
using shift operations.

Setting Bits
 How can we set a bit on or off?
 Manipulations on bits are enabled by mask 

and bitwise operators.
 Bitwise OR of anything with 1 results in 1. 
 Bitwise AND of anything with 0 results in 0.
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Mask: a bit pattern with known values

Example of unsetting specific bits

Use a mask to unset (clear) the 5 leftmost bits of a pattern.
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Test the mask with the byte 10100110.

Example

The mask is 00000111.

Target  1 0 1 0 0 1 1 0 AND
Mask 0 0 0 0 0 1 1 1

------------------
Result                 0 0 0 0 0 1 1 0

Getting Bits
 How can we know if a bit is on or off?
 Manipulations on bits are enabled by 

mask and bitwise operators.
 Bitwise AND of anything with 1 results in 

the same value.
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Getting Bits
 For instance, how can we check if the 

light in room #3 is turned on or off?

int lights = 0x27;
int mask = 0x1;
mask <<= 2;
if(lights & mask)
puts(“turned on”);

else
puts(“turned off”);

lights: …00100111

mask: …00000001

mask: …00000100

lights & mask: …00000100

Example of setting specific bits

Use a mask to set the 5 leftmost bits to be 1.
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Test the mask with the pattern 10100110.

Example

The mask is 11111000.

Target  1 0 1 0 0 1 1 0 OR
Mask 1 1 1 1 1 0 0 0

------------------
Result  1 1 1 1 1 1 1 0

Setting Bits
 For instance, how can we turn on the light in 

room #3?

int lights = 0;
int mask = 1;
mask <<= 2;
lights |= mask;

lights: …00000000

mask: …00000001

mask: …00000100

lights: …00000100
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Setting Bits
 For instance, how can we turn off the light in 

room #3?

int lights = 39;
int mask = 1;
mask <<= 2;
lights &= ~mask;

lights: …00100111

mask: …00000100

lights: …00100011
~mask: 1…11111011

Example of flipping specific bits

Use a mask to flip the 5 leftmost bits of a byte.
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Test the mask with the pattern 10100110.

Example

Target  1 0 1 0 0 1 1 0 XOR
Mask 1 1 1 1 1 0 0 0

------------------
Result                 0 1 0 1 1 1 1 0

Possible Quiz Questions

11010011
&
10001100
------------

11010011
|
10001100
------------

11010011
^
10001100
------------

~11010011
---------------

11010011>>3
-----------------

11010011<<3
-----------------

Give the results of the following bitwise operations:
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Stacks
 Java provides an inbuilt 

object type called Stack.
public Stack()

 Insertions and deletions 
follow the last-in first-out 
scheme (LIFO)

 Think of a spring-loaded 
plate dispenser

 Main stack operations:
 push(e): inserts an element, e
 pop(): removes and returns 

the last inserted element

 Auxiliary stack 
operations:
 top(): returns the last 

inserted element without 
removing it

 size(): returns the 
number of elements 
stored

 isEmpty(): indicates 
whether no elements are 
stored

Example
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Applications of Stacks
 Direct applications

 Page-visited history in a Web browser
 Undo sequence in a text editor
 Chain of method calls in a language 

supporting recursion
 Indirect applications

 Auxiliary data structure for algorithms
 Component of other data structures

Array-based Stack
 A simple way of 

implementing the 
Stack ADT uses an 
array

 We add elements 
from left to right

 A variable keeps 
track of the  index of 
the top element 

S
0 1 2 t

…

Algorithm size()
return t  1

Algorithm pop()
if isEmpty() then

return null
else 
t  t  1
return S[t  1]
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Array-based Stack (cont.)

 The array storing the 
stack elements may 
become full

 A push operation will 
then either grow the 
array or causes the 
array to double its 
size. 

S
0 1 2 t

…

Algorithm push(o)
if t = S.length  1 then

// double S.length
…

t  t  1
S[t]  o

Performance
 Performance

 Let n be the number of elements in the stack
 The space used is O(n)

 Each operation runs in time O(1)

 Qualifications
 Trying to push a new element into a full stack 

causes an implementation-specific exception or
 Pushing an item on a full stack causes the 

underlying array to double in size, which implies 
each operation runs in O(1) amortized time.
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Computing Spans (not in book)
 Using a stack as an auxiliary 

data structure in an algorithm
 Given an array X, the span S[i]

of X[i] is the maximum number 
of consecutive elements X[j] 
before and including X[i], such 
that X[j]  X[i]. In other words, 
the span at i is the distance
from i to the first element 
before i and larger than X[i].  

 Spans have applications to 
financial analysis
 E.g., stock at 52-week high

6 3 4 5 2

1 1 2 3 1

X

S

0
1
2
3
4
5
6
7

0 1 2 3 4

Quadratic Algorithm
Algorithm spans1(X, n)

Input array X of n integers
Output array S of spans of X # of operations
S  new array of n integers n
for i  0 to n  1 do n

s  i – 1 n
while s 0  X[s]  X[i] 1 2 … (n  1)

s  s – 1 1 2 … (n  1)
S[i]  i – s n

return S 1

Algorithm spans1 runs in O(n2) time 
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Computing Spans with a Stack
 We keep in a stack the indices 

of the elements larger than the 
current. 

 We scan the array from left to 
right
 Let i be the current index
 While stack is not empty, 

we pop indices from the 
stack until we find index j
such that X[j]  X[i]

 If stack is empty, we set 
S[i]  i  + 1 otherwise

 we set S[i]  i  j

 We push i onto the stack

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

6 3 4 1 2 3 5 4
1 1 2 1 2 3 6 1

X:
S:

Stack: 0 0
1

0
2

0
2
3

0
2
4

0
2
5

0
6

0
6
7

array X

Computing Spans with a Stack
 We keep in a stack the indices 

of the elements larger than the 
current. 

 We scan the array from left to 
right
 Let i be the current index
 While stack is not empty, 

we pop indices from the 
stack until we find index j
such that X[j]  X[i]

 If stack is empty, we set 
S[i]  i  + 1 otherwise

 we set S[i]  i  j

 We push i onto the stack

Algorithm spans2(X, n)
S  new array of n integers
A  new empty stack
for i  0 to n  1 do

while (A.isEmpty() 
X[A.top()]  X[i] )

A.pop()
if A.isEmpty() then

S[i]  i  1
else

S[i]  i  A.top()
A.push(i)

return S 

A.top() = j s.t. X[j]  X[i]
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Analysis: Linear Time 
Algorithm spans2(X, n) #

S  new array of n integers n
A  new empty stack 1
for i  0 to n  1 do n

while (A.isEmpty() 
X[A.top()]  X[i] ) n

A.pop() n
if A.isEmpty() then n

S[i]  i  1 n
else

S[i]  i  A.top() n
A.push(i) n

return S 1

 Each index of the 
array
 is pushed into the 

stack exactly one 
 is popped from 

the stack at most 
once

 The body of the 
while-loop is executed 
at most n times 

 Algorithm spans2 runs 
in O(n) time 

 The body of For-loop 
has O(1) amortized 
cost.

Queues
 In a Queue, insertions and 

deletions follow the first-in first-
out scheme (FIFO)

 Insertions are at the “rear” or 
“end” of the queue and 
removals are at the “front” of 
the queue

 Main queue operations:
 enqueue(e): inserts an element, 

e, at the end of the queue
 dequeue(): removes and 

returns the element at the front 
of the queue

 Java.util.Queue is an interface:
Queue queueA = new LinkedList();

enqueue = add, dequeue = remove 

 Auxiliary queue operations:
 first(): returns the element 

at the front without 
removing it

 size(): returns the number 
of elements stored

 isEmpty(): indicates 
whether no elements are 
stored

 Boundary cases:
 Attempting the execution of 

dequeue or first on an 
empty queue signals an 
error or returns null 
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Example
Operation Output Q 
enqueue(5) – (5)
enqueue(3) – (5, 3)
dequeue() 5 (3)
enqueue(7) – (3, 7)
dequeue() 3 (7)
first() 7 (7)
dequeue() 7 ()
dequeue() null ()
isEmpty() true ()
enqueue(9) – (9)
enqueue(7) – (9, 7)
size() 2 (9, 7)
enqueue(3) – (9, 7, 3)
enqueue(5) – (9, 7, 3, 5)
dequeue() 9 (7, 3, 5)

Application: Buffered Output
 The Internet is designed to route information in 

discrete packets, which are at most 1500 bytes in 
length. 

 Any time a video stream is transmitted on the 
Internet, it must be subdivided into packets and 
these packets must each be individually routed to 
their destination.

 Because of vagaries and errors, the time it takes for 
these packets to arrive at their destination can be 
highly variable. 

 Thus, we need a way of “smoothing out” these 
variations
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Array-based Queue
 Use an array of size N in a circular fashion
 Two variables keep track of the front and size

f index of the front element
sz number of stored elements

 When the queue has fewer than N elements, array 
location r = (f + sz) mod N is the first empty slot 
past the rear of the queue

Q
0 1 2 rf

normal configuration

Q
0 1 2 fr

wrapped-around configuration

Queue Operations
 We use the 

modulo operator 
(remainder of 
division)

Algorithm size()
return sz

Algorithm isEmpty()
return (sz )

Q
0 1 2 rf

Q
0 1 2 fr
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Queue Operations (cont.)
Algorithm enqueue(o)

if sz = N then
signal queue full error

else 
r  (f + sz) mod N
Q[r]  o
sz  (sz + 1)

 Operation enqueue 
throws an exception if 
the array is full

 One could also grow 
the underlying array by 
a factor of 2

Q
0 1 2 rf

Q
0 1 2 fr

Queue Operations (cont.)
 Note that operation 

dequeue returns null 
if the queue is empty

 One could 
alternatively signal 
an error

Algorithm dequeue()
if isEmpty() then

return null
else
o  Q[f]
f  (f + 1) mod N
sz  (sz  1)
return o

Q
0 1 2 rf

Q
0 1 2 fr
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Index-Based Lists
 An index-based list supports the following operations:

Example
 A sequence of List operations:

54
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Array-based Lists
 An obvious choice for implementing the list ADT is 

to use an array, A, where A[i] stores (a reference 
to) the element with index i.

 With a representation based on an array A, the 
get(i) and set(i, e) methods are easy to implement 
by accessing A[i] (assuming i is a legitimate 
index).

A
0 1 2 ni

56

Insertion
 In an operation add(i, o), we need to make room 

for the new element by shifting forward the n  i
elements A[i], …, A[n  1]

 In the worst case (i  0), this takes O(n) time

A
0 1 2 ni

A
0 1 2 ni

A
0 1 2 n

o
i

55
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Element Removal
 In an operation remove(i), we need to fill the hole left by 

the removed element by shifting backward the n  i  1
elements A[i  1], …, A[n  1]

 In the worst case (i  0), this takes O(n) time

A
0 1 2 ni

A
0 1 2 n

o
i

A
0 1 2 ni

Pseudo-code
 Algorithms for insertion and removal:

57
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Performance
 In an array-based implementation of a 

dynamic list:
 The space used by the data structure is O(n)

 Indexing the element at i takes O(1) time
 add and remove run in O(n) time in the worst case

 In an add operation, when the array is full, 
instead of throwing an exception, we can 
replace the array with a larger one.

Linked Lists
 Linked lists store elements at “nodes” or 

“positions”.
 Access methods:

60
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Linked Lists
 Update methods:

 Implementation:
 The most natural way to implement a positional list is with a 

doubly-linked list.

61Lists and Iterators
61

prev next

element

trailerheader nodes/positions

elementsnode

62

Insertion
 Insert a new node, q, between p and its successor.

A B X C

A B C

p

A B C

p

X

q

p q
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Deletion
 Remove a node, p, from a doubly-linked list.

A B C D

p

A B C

D

p

A B C

Pseudo-code
 Algorithms for insertion and deletion in a 

linked list:

64
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Performance
 A linked list can perform all of the access 

and update operations for a positional 
list in constant time.

65

What is a Tree
 In computer science, a 

tree is an abstract model 
of a hierarchical 
structure

 A tree consists of nodes 
with a parent-child 
relation

 Applications:
 Organization charts
 File systems
 Programming 

environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada
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subtree

Tree Terminology
 Root: node without parent (A)
 Internal node: node with at least 

one child (A, B, C, F)
 External node (a.k.a. leaf): node 

without children (E, I, J, K, G, H, D)
 Ancestors of a node: parent, 

grandparent, grand-grandparent, 
etc.

 Depth of a node: number of 
ancestors

 Height of a tree: maximum depth 
of any node (3)

 Descendant of a node: child, 
grandchild, grand-grandchild, etc.

A

B DC

G HE F

I J K

 Subtree: tree consisting of 
a node and its 
descendants

Tree Operations
 Accessor methods:

 Query methods:

 Generic methods:
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Preorder Traversal
 A traversal visits the nodes of a 

tree in a systematic manner
 In a preorder traversal, a node is 

visited before its descendants 
 Application: print a structured 

document

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v

preorder (w)

Postorder Traversal
 In a postorder traversal, a 

node is visited after its 
descendants

 Application: compute space 
used by files in a directory and 
its subdirectories

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

cs16/

homeworks/ todo.txt
1Kprograms/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8
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Binary Trees
 A binary tree is a tree with the 

following properties:
 Each internal node has at most two 

children (exactly two for proper
binary trees)

 The children of a node are an 
ordered pair

 We call the children of an internal 
node left child and right child

 Alternative recursive definition: a 
binary tree is either
 a tree consisting of a single node, or
 a tree whose root has an ordered 

pair of children, each of which is a 
binary tree

 Applications:
 arithmetic expressions
 decision processes
 searching

A

B C

F GD E

H I

Arithmetic Expression Tree
 Binary tree associated with an arithmetic expression

 internal nodes: operators
 external nodes: operands

 Example: arithmetic expression tree for the 
expression (2  (a  1)  (3  b))

 Post-order traversal:
 2 a 1 – x 3 b x +
 Using a queue to store the list

and a stack to compute
the value of the expression





2

a 1

3 b

71
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Decision Tree
 Binary tree associated with a decision process

 internal nodes: questions with yes/no answer
 external nodes: decisions

 Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Chipotle Gracie’s Café Paragon

Yes No

Yes No Yes No

Properties of Proper Binary Trees
 Notation

n: number of nodes
e: number of 

external nodes
i: number of internal 

nodes
h: height

Properties:
 n  e + i      (*)

 e  i  1

 n  2e  1

 h  i            (*)

 h  (n  1)2
 e  2h               (*)

 h  log2 e    (*)

 h  log2 (n  1)  1

(*): true for any 
binary tree

73
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Binary Tree Operations
 A binary tree 

extends the Tree 
operations, i.e., it 
inherits all the 
methods of Tree.

 Additional methods:
 position leftChild(v)
 position rightChild(v)
 position sibling(v)

 The above methods 
return null when 
there is no left, 
right, or sibling of p, 
respectively

 Update methods 
may be defined by 
data structures 
implementing the 
binary tree

76

Inorder Traversal
 In an inorder traversal a 

node is visited after its left 
subtree and before its right 
subtree

Algorithm inOrder(v)
if left (v) ≠ null

inOrder (left (v))
visit(v)
if right(v) ≠ null

inOrder (right (v))

3

1

2

5

6

7 9

8

4
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Print Arithmetic Expressions
 Specialization of an inorder 

traversal
 print operand or operator 

when visiting node
 print “(“ before traversing left 

subtree
 print “)“ after traversing right 

subtree

Algorithm inOrder(v)
if left (v) ≠ null || right(v) ≠ null

print(“(”)
if left (v) ≠ null

inOrder (left(v))
print(v.element ())
if right(v) ≠ null

inOrder (right(v))
if left (v) ≠ null || right(v) ≠ null

print (“)”)





2

a 1

3 b
((2  (a  1))  (3  b))

78

Evaluate Arithmetic Expressions
 Specialization of a postorder 

traversal
 recursive method returning 

the value of a subtree
 when visiting an internal 

node, combine the values 
of the subtrees

Algorithm evalExpr(v)
if isExternal (v)

return v.element ()
else

x  evalExpr(left(v))
y  evalExpr(right(v))
return v.element(x, y)





2

5 1

3 2
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Inorder Traversal
 Application: draw a binary tree 

from x(v) and y(v):
 x(v) = inorder rank of v
 y(v) = depth of v

 Example:
 v:   2, x, a, –, 1, +, 3, x, b
 x(v): 1, 2, 3, 4, 5, 6, 7, 8, 9
 y(v): 2, 1, 3, 2, 3, 0, 2, 1, 2

Algorithm ?

3

1

2

5

6

7 9

8

4





2

a 1

3 b

1. Sort v by inorder rank
2. Call create(1, n, 0)

create(f, t, d):
1. If (f = t) return v[f]
2. Pick j in [f..t] such that y[j] = d
3. Return (v[j],  create(f, j-1, d+1), 

create(j+1, t, d+1))
// as (root, leftChild, rightChild)

Possible Quiz Question
 Draw a binary tree from x(v) 

and y(v):
 x(v) = inorder rank of v
 y(v) = postorder rank of v

 Example:
 v:   2, x, a, –, 1, +, 3, x, b
 x(v): 1, 2, 3, 4, 5, 6, 7, 8, 9
 y(v): 1, 5, 2, 4, 3, 9, 6, 8, 7
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2

5

6

7 9

8

4





2

a 1

3 b

Algorithm ?
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81

Euler Tour Traversal
 Generic traversal of a tree
 Travel each edge exactly twice.





2

5 1

3 2

L
B

R

e1 e2

e3
e4

e5 e6

e7 e8

Euler Tour = e1e3e3e4e7e7e8e8e4e1e2e5e5e6e6e2



Linked Structure for Trees
 A node is represented by 

an object storing
 Element
 Parent node
 Sequence of children 

nodes
 Node objects implement 

the Position ADT

B

DA

C E

F

B

 

A D F



C



E
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Linked Structure for Binary Trees
 A node is represented 

by an object storing
 Element
 Parent node
 Left child node
 Right child node

 Node objects implement 
the Position ADT

B

DA

C E

 

   

B

A D

C E



Array-Based Representation of 
Binary Trees
 Nodes are stored in an array A

Node v is stored at A[pos(v)]
 pos(root) = 0
 if node is the left child of parent(node), 

pos(node) = 2  pos(parent(node)) + 1
 if node is the right child of parent(node), 

pos(node) = 2 pos(parent(node))  2

0

1 2

5 63 4

9 10

A

HG

FE

D

C

B

J

A B D G H ……

1 2 9 100
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Exercise A-1.12
Given an array, A, of n − 2 unique integers in the range 
from 1 to n, describe an O(n)-time method for finding 
the two integers in the range from 1 to n that are not in 
A. You may use only O(1) space in addition to the space 
used by A.

1+2+…+n = n(n+1)/2
12+22+…+n2 = n(n+1)(2n+1)/6

Let the missing numbers be x and y, then
sum(A) + x + y = n(n+1)/2
sum(A2) + x2 + y2 = n(n+1)(2n+1)/6

Exercise A-1.4
An evil king has a cellar containing n bottles of 
expensive wine, and his guards have just caught a spy 
trying to poison the king’s wine. Fortunately, the guards 
caught the spy after he succeeded in poisoning only 
one bottle. Unfortunately, they don’t know which one. 
To make matters worse, the poison the spy used was 
very deadly; just one drop diluted even a billion to one 
will still kill someone. Even so, the poison works slowly; 
it takes a full month for the person to die. Design a 
scheme that allows the evil king to determine exactly 
which one of his wine bottles was poisoned in just one 
month’s time while using a least number of taste testers
and expending at most O(log n) of his taste testers.
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Exercise A-1.5 
Suppose you are given a set of small boxes, numbered 1 
to n, identical in every respect except that each of the 
first i contain a pearl whereas the remaining n−i are 
empty. You also have two magic wands that can each 
test whether a box is empty or not in a single touch, 
except that a wand disappears if you test it on an empty 
box. Show that, without knowing the value of i, you can 
use the two wands to determine all the boxes containing 
pearls using at most o(n) wand touches. Express, as a 
function of n, the asymptotic number of wand touches
needed. 

Exercise A-1.6
Repeat the previous problem assuming that you now 
have k magic wands, with k > 2 and k < log n. Express, 
as a function of n and k, the asymptotic number of wand 
touches needed to identify all the magic boxes containing 
pearls.
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