
Lists and Iterators 9/10/2019

1

1

Ch 02 Data Structures

Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

xkcd “Seven” http://xkcd.com/1417/
Used with permission under Creative Commons 2.5 License

What is Bitwise Structure?
 The smallest type in Java (or C++) is of 8 bits

(char).
 Sometimes we need only a single bit.
 For instance, storing the status of the lights in 8

rooms:
 We need to define an array of at least 8 chars.

If the light of room 3 is turned on the value of
the third char is 1, otherwise 0.

 Total array of 64 bits.
EXPENSIVE in place and time!!!

1

2

Lists and Iterators 9/10/2019

2

What is Bitwise Structure?
 It is better to define only 8 bits since a bit can also store the

values 0 or 1.
 But the problem is that there is no data type which is

1 bit long (char is the longer with 1 byte).
 Solution: define a char (8 bits) but refer to each bit

separately.
 Bitwise operators, introduced by many languages, provide

one of its more powerful tools for using and manipulating
memory. They give the language the real power of a “low-
level language”.

What is Bitwise Structure?
 Accessing bits directly is fast and efficient, especially

if you are writing a real-time application.
 A single bit cannot be accessed directly,

since it has no address of its own.
 The language introduces the bitwise operators,

which help in manipulating a
single bit of a byte.

 bitwise operators may be used on integral types
only.

 https://www.programiz.com/java-
programming/bitwise-operators

3

4

Lists and Iterators 9/10/2019

3

Unary and binary operations

Logical operations

5

6

Lists and Iterators 9/10/2019

4

Truth tables of logical operations

Bitwise Operators in Java

& bitwise AND
| bitwise OR
^ bitwise XOR
~ 1’s compliment

<< Shift left
>> Shift right

All these operators can be suffixed with =
For instance a &= b; is the same as a = a & b;

7

8

Lists and Iterators 9/10/2019

5

Bitwise Operators – truth table

~aa^ba|ba&bba

100000

111010

011001

001111

NOT operator

9

10

Lists and Iterators 9/10/2019

6

Use the NOT operator on one byte

Example
Target x = 1 0 0 1 1 0 0 0 NOT

Result ~x = 0 1 1 0 0 1 1 1

AND operator

11

12

Lists and Iterators 9/10/2019

7

Use the AND operator on two bytes

Example
Target x = 1 0 0 1 1 0 0 0 AND

y = 0 0 1 1 0 1 0 1

Result x&y = 0 0 0 1 0 0 0 0

Figure 4-8
Inherent rule of the AND operator

13

14

Lists and Iterators 9/10/2019

8

OR operator

Use the OR operator on two bytes

Example
Target x = 1 0 0 1 1 0 0 0 OR

y = 0 0 1 1 0 1 0 1

Result x|y = 1 0 1 1 1 1 0 1

15

16

Lists and Iterators 9/10/2019

9

XOR operator

Use the XOR operator on two bytes

Example
Target x = 1 0 0 1 1 0 0 0 XOR

y = 0 0 1 1 0 1 0 1

Result x^y = 1 0 1 0 1 1 0 1

17

18

Lists and Iterators 9/10/2019

10

Exercise A-1.11
Given an array, A, of n positive integers, each of which
appears in A exactly twice, except for one integer, x,
describe an O(n)-time method for finding x using only a
single variable besides A.

Shift operations

19

20

Lists and Iterators 9/10/2019

11

Examples

Let x be byte 00111011 which represents 59.
Then (x >> 1) is 00011101, which is 29 = 59/2.

(x << 1) is 01110110, which is 118 = 59*2.

(x >> 2) is 00001110, which is 14 = 59/4.

(x << 2) is 11101100, which is 236 = 59*4.

Divide or multiply a number by a power of 2
using shift operations.

Setting Bits
 How can we set a bit on or off?
 Manipulations on bits are enabled by mask

and bitwise operators.
 Bitwise OR of anything with 1 results in 1.
 Bitwise AND of anything with 0 results in 0.

21

22

Lists and Iterators 9/10/2019

12

Mask: a bit pattern with known values

Example of unsetting specific bits

Use a mask to unset (clear) the 5 leftmost bits of a pattern.

23

24

Lists and Iterators 9/10/2019

13

Test the mask with the byte 10100110.

Example

The mask is 00000111.

Target 1 0 1 0 0 1 1 0 AND
Mask 0 0 0 0 0 1 1 1

Result 0 0 0 0 0 1 1 0

Getting Bits
 How can we know if a bit is on or off?
 Manipulations on bits are enabled by

mask and bitwise operators.
 Bitwise AND of anything with 1 results in

the same value.

25

26

Lists and Iterators 9/10/2019

14

Getting Bits
 For instance, how can we check if the

light in room #3 is turned on or off?

int lights = 0x27;
int mask = 0x1;
mask <<= 2;
if(lights & mask)
puts(“turned on”);

else
puts(“turned off”);

lights: …00100111

mask: …00000001

mask: …00000100

lights & mask: …00000100

Example of setting specific bits

Use a mask to set the 5 leftmost bits to be 1.

27

28

Lists and Iterators 9/10/2019

15

Test the mask with the pattern 10100110.

Example

The mask is 11111000.

Target 1 0 1 0 0 1 1 0 OR
Mask 1 1 1 1 1 0 0 0

Result 1 1 1 1 1 1 1 0

Setting Bits
 For instance, how can we turn on the light in

room #3?

int lights = 0;
int mask = 1;
mask <<= 2;
lights |= mask;

lights: …00000000

mask: …00000001

mask: …00000100

lights: …00000100

29

30

Lists and Iterators 9/10/2019

16

Setting Bits
 For instance, how can we turn off the light in

room #3?

int lights = 39;
int mask = 1;
mask <<= 2;
lights &= ~mask;

lights: …00100111

mask: …00000100

lights: …00100011
~mask: 1…11111011

Example of flipping specific bits

Use a mask to flip the 5 leftmost bits of a byte.

31

32

Lists and Iterators 9/10/2019

17

Test the mask with the pattern 10100110.

Example

Target 1 0 1 0 0 1 1 0 XOR
Mask 1 1 1 1 1 0 0 0

Result 0 1 0 1 1 1 1 0

Possible Quiz Questions

11010011
&
10001100

11010011
|
10001100

11010011
^
10001100

~11010011

11010011>>3

11010011<<3

Give the results of the following bitwise operations:

33

34

Lists and Iterators 9/10/2019

18

Stacks
 Java provides an inbuilt

object type called Stack.
public Stack()

 Insertions and deletions
follow the last-in first-out
scheme (LIFO)

 Think of a spring-loaded
plate dispenser

 Main stack operations:
 push(e): inserts an element, e
 pop(): removes and returns

the last inserted element

 Auxiliary stack
operations:
 top(): returns the last

inserted element without
removing it

 size(): returns the
number of elements
stored

 isEmpty(): indicates
whether no elements are
stored

Example

35

36

Lists and Iterators 9/10/2019

19

Applications of Stacks
 Direct applications

 Page-visited history in a Web browser
 Undo sequence in a text editor
 Chain of method calls in a language

supporting recursion
 Indirect applications

 Auxiliary data structure for algorithms
 Component of other data structures

Array-based Stack
 A simple way of

implementing the
Stack ADT uses an
array

 We add elements
from left to right

 A variable keeps
track of the index of
the top element

S
0 1 2 t

…

Algorithm size()
return t  1

Algorithm pop()
if isEmpty() then

return null
else
t  t  1
return S[t  1]

37

38

Lists and Iterators 9/10/2019

20

Array-based Stack (cont.)

 The array storing the
stack elements may
become full

 A push operation will
then either grow the
array or causes the
array to double its
size.

S
0 1 2 t

…

Algorithm push(o)
if t = S.length  1 then

// double S.length
…

t  t  1
S[t]  o

Performance
 Performance

 Let n be the number of elements in the stack
 The space used is O(n)

 Each operation runs in time O(1)

 Qualifications
 Trying to push a new element into a full stack

causes an implementation-specific exception or
 Pushing an item on a full stack causes the

underlying array to double in size, which implies
each operation runs in O(1) amortized time.

39

40

Lists and Iterators 9/10/2019

21

Computing Spans (not in book)
 Using a stack as an auxiliary

data structure in an algorithm
 Given an array X, the span S[i]

of X[i] is the maximum number
of consecutive elements X[j]
before and including X[i], such
that X[j]  X[i]. In other words,
the span at i is the distance
from i to the first element
before i and larger than X[i].

 Spans have applications to
financial analysis
 E.g., stock at 52-week high

6 3 4 5 2

1 1 2 3 1

X

S

0
1
2
3
4
5
6
7

0 1 2 3 4

Quadratic Algorithm
Algorithm spans1(X, n)

Input array X of n integers
Output array S of spans of X # of operations
S  new array of n integers n
for i  0 to n  1 do n

s  i – 1 n
while s 0  X[s]  X[i] 1 2 … (n  1)

s  s – 1 1 2 … (n  1)
S[i]  i – s n

return S 1

Algorithm spans1 runs in O(n2) time

41

42

Lists and Iterators 9/10/2019

22

Computing Spans with a Stack
 We keep in a stack the indices

of the elements larger than the
current.

 We scan the array from left to
right
 Let i be the current index
 While stack is not empty,

we pop indices from the
stack until we find index j
such that X[j]  X[i]

 If stack is empty, we set
S[i]  i + 1 otherwise

 we set S[i]  i  j

 We push i onto the stack

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

6 3 4 1 2 3 5 4
1 1 2 1 2 3 6 1

X:
S:

Stack: 0 0
1

0
2

0
2
3

0
2
4

0
2
5

0
6

0
6
7

array X

Computing Spans with a Stack
 We keep in a stack the indices

of the elements larger than the
current.

 We scan the array from left to
right
 Let i be the current index
 While stack is not empty,

we pop indices from the
stack until we find index j
such that X[j]  X[i]

 If stack is empty, we set
S[i]  i + 1 otherwise

 we set S[i]  i  j

 We push i onto the stack

Algorithm spans2(X, n)
S  new array of n integers
A  new empty stack
for i  0 to n  1 do

while (A.isEmpty() 
X[A.top()]  X[i])

A.pop()
if A.isEmpty() then

S[i]  i  1
else

S[i]  i  A.top()
A.push(i)

return S

A.top() = j s.t. X[j]  X[i]

43

44

Lists and Iterators 9/10/2019

23

Analysis: Linear Time
Algorithm spans2(X, n) #

S  new array of n integers n
A  new empty stack 1
for i  0 to n  1 do n

while (A.isEmpty() 
X[A.top()]  X[i]) n

A.pop() n
if A.isEmpty() then n

S[i]  i  1 n
else

S[i]  i  A.top() n
A.push(i) n

return S 1

 Each index of the
array
 is pushed into the

stack exactly one
 is popped from

the stack at most
once

 The body of the
while-loop is executed
at most n times

 Algorithm spans2 runs
in O(n) time

 The body of For-loop
has O(1) amortized
cost.

Queues
 In a Queue, insertions and

deletions follow the first-in first-
out scheme (FIFO)

 Insertions are at the “rear” or
“end” of the queue and
removals are at the “front” of
the queue

 Main queue operations:
 enqueue(e): inserts an element,

e, at the end of the queue
 dequeue(): removes and

returns the element at the front
of the queue

 Java.util.Queue is an interface:
Queue queueA = new LinkedList();

enqueue = add, dequeue = remove

 Auxiliary queue operations:
 first(): returns the element

at the front without
removing it

 size(): returns the number
of elements stored

 isEmpty(): indicates
whether no elements are
stored

 Boundary cases:
 Attempting the execution of

dequeue or first on an
empty queue signals an
error or returns null

45

46

Lists and Iterators 9/10/2019

24

Example
Operation Output Q
enqueue(5) – (5)
enqueue(3) – (5, 3)
dequeue() 5 (3)
enqueue(7) – (3, 7)
dequeue() 3 (7)
first() 7 (7)
dequeue() 7 ()
dequeue() null ()
isEmpty() true ()
enqueue(9) – (9)
enqueue(7) – (9, 7)
size() 2 (9, 7)
enqueue(3) – (9, 7, 3)
enqueue(5) – (9, 7, 3, 5)
dequeue() 9 (7, 3, 5)

Application: Buffered Output
 The Internet is designed to route information in

discrete packets, which are at most 1500 bytes in
length.

 Any time a video stream is transmitted on the
Internet, it must be subdivided into packets and
these packets must each be individually routed to
their destination.

 Because of vagaries and errors, the time it takes for
these packets to arrive at their destination can be
highly variable.

 Thus, we need a way of “smoothing out” these
variations

47

48

Lists and Iterators 9/10/2019

25

Array-based Queue
 Use an array of size N in a circular fashion
 Two variables keep track of the front and size

f index of the front element
sz number of stored elements

 When the queue has fewer than N elements, array
location r = (f + sz) mod N is the first empty slot
past the rear of the queue

Q
0 1 2 rf

normal configuration

Q
0 1 2 fr

wrapped-around configuration

Queue Operations
 We use the

modulo operator
(remainder of
division)

Algorithm size()
return sz

Algorithm isEmpty()
return (sz )

Q
0 1 2 rf

Q
0 1 2 fr

49

50

Lists and Iterators 9/10/2019

26

51

Queue Operations (cont.)
Algorithm enqueue(o)

if sz = N then
signal queue full error

else
r  (f + sz) mod N
Q[r]  o
sz  (sz + 1)

 Operation enqueue
throws an exception if
the array is full

 One could also grow
the underlying array by
a factor of 2

Q
0 1 2 rf

Q
0 1 2 fr

Queue Operations (cont.)
 Note that operation

dequeue returns null
if the queue is empty

 One could
alternatively signal
an error

Algorithm dequeue()
if isEmpty() then

return null
else
o  Q[f]
f  (f + 1) mod N
sz  (sz  1)
return o

Q
0 1 2 rf

Q
0 1 2 fr

51

52

Lists and Iterators 9/10/2019

27

Index-Based Lists
 An index-based list supports the following operations:

Example
 A sequence of List operations:

54

53

54

Lists and Iterators 9/10/2019

28

Array-based Lists
 An obvious choice for implementing the list ADT is

to use an array, A, where A[i] stores (a reference
to) the element with index i.

 With a representation based on an array A, the
get(i) and set(i, e) methods are easy to implement
by accessing A[i] (assuming i is a legitimate
index).

A
0 1 2 ni

56

Insertion
 In an operation add(i, o), we need to make room

for the new element by shifting forward the n  i
elements A[i], …, A[n  1]

 In the worst case (i  0), this takes O(n) time

A
0 1 2 ni

A
0 1 2 ni

A
0 1 2 n

o
i

55

56

Lists and Iterators 9/10/2019

29

57

Element Removal
 In an operation remove(i), we need to fill the hole left by

the removed element by shifting backward the n  i  1
elements A[i  1], …, A[n  1]

 In the worst case (i  0), this takes O(n) time

A
0 1 2 ni

A
0 1 2 n

o
i

A
0 1 2 ni

Pseudo-code
 Algorithms for insertion and removal:

57

58

Lists and Iterators 9/10/2019

30

Performance
 In an array-based implementation of a

dynamic list:
 The space used by the data structure is O(n)

 Indexing the element at i takes O(1) time
 add and remove run in O(n) time in the worst case

 In an add operation, when the array is full,
instead of throwing an exception, we can
replace the array with a larger one.

Linked Lists
 Linked lists store elements at “nodes” or

“positions”.
 Access methods:

60

59

60

Lists and Iterators 9/10/2019

31

Linked Lists
 Update methods:

 Implementation:
 The most natural way to implement a positional list is with a

doubly-linked list.

61Lists and Iterators
61

prev next

element

trailerheader nodes/positions

elementsnode

62

Insertion
 Insert a new node, q, between p and its successor.

A B X C

A B C

p

A B C

p

X

q

p q

61

62

Lists and Iterators 9/10/2019

32

63

Deletion
 Remove a node, p, from a doubly-linked list.

A B C D

p

A B C

D

p

A B C

Pseudo-code
 Algorithms for insertion and deletion in a

linked list:

64

63

64

Lists and Iterators 9/10/2019

33

Performance
 A linked list can perform all of the access

and update operations for a positional
list in constant time.

65

What is a Tree
 In computer science, a

tree is an abstract model
of a hierarchical
structure

 A tree consists of nodes
with a parent-child
relation

 Applications:
 Organization charts
 File systems
 Programming

environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

65

66

Lists and Iterators 9/10/2019

34

subtree

Tree Terminology
 Root: node without parent (A)
 Internal node: node with at least

one child (A, B, C, F)
 External node (a.k.a. leaf): node

without children (E, I, J, K, G, H, D)
 Ancestors of a node: parent,

grandparent, grand-grandparent,
etc.

 Depth of a node: number of
ancestors

 Height of a tree: maximum depth
of any node (3)

 Descendant of a node: child,
grandchild, grand-grandchild, etc.

A

B DC

G HE F

I J K

 Subtree: tree consisting of
a node and its
descendants

Tree Operations
 Accessor methods:

 Query methods:

 Generic methods:

67

68

Lists and Iterators 9/10/2019

35

Preorder Traversal
 A traversal visits the nodes of a

tree in a systematic manner
 In a preorder traversal, a node is

visited before its descendants
 Application: print a structured

document

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v

preorder (w)

Postorder Traversal
 In a postorder traversal, a

node is visited after its
descendants

 Application: compute space
used by files in a directory and
its subdirectories

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

cs16/

homeworks/ todo.txt
1Kprograms/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

69

70

Lists and Iterators 9/10/2019

36

Binary Trees
 A binary tree is a tree with the

following properties:
 Each internal node has at most two

children (exactly two for proper
binary trees)

 The children of a node are an
ordered pair

 We call the children of an internal
node left child and right child

 Alternative recursive definition: a
binary tree is either
 a tree consisting of a single node, or
 a tree whose root has an ordered

pair of children, each of which is a
binary tree

 Applications:
 arithmetic expressions
 decision processes
 searching

A

B C

F GD E

H I

Arithmetic Expression Tree
 Binary tree associated with an arithmetic expression

 internal nodes: operators
 external nodes: operands

 Example: arithmetic expression tree for the
expression (2  (a  1)  (3  b))

 Post-order traversal:
 2 a 1 – x 3 b x +
 Using a queue to store the list

and a stack to compute
the value of the expression





2

a 1

3 b

71

72

Lists and Iterators 9/10/2019

37

73

Decision Tree
 Binary tree associated with a decision process

 internal nodes: questions with yes/no answer
 external nodes: decisions

 Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Chipotle Gracie’s Café Paragon

Yes No

Yes No Yes No

Properties of Proper Binary Trees
 Notation

n: number of nodes
e: number of

external nodes
i: number of internal

nodes
h: height

Properties:
 n  e + i (*)

 e  i  1

 n  2e  1

 h  i (*)

 h  (n  1)2
 e  2h (*)

 h  log2 e (*)

 h  log2 (n  1)  1

(*): true for any
binary tree

73

74

Lists and Iterators 9/10/2019

38

75

Binary Tree Operations
 A binary tree

extends the Tree
operations, i.e., it
inherits all the
methods of Tree.

 Additional methods:
 position leftChild(v)
 position rightChild(v)
 position sibling(v)

 The above methods
return null when
there is no left,
right, or sibling of p,
respectively

 Update methods
may be defined by
data structures
implementing the
binary tree

76

Inorder Traversal
 In an inorder traversal a

node is visited after its left
subtree and before its right
subtree

Algorithm inOrder(v)
if left (v) ≠ null

inOrder (left (v))
visit(v)
if right(v) ≠ null

inOrder (right (v))

3

1

2

5

6

7 9

8

4

75

76

Lists and Iterators 9/10/2019

39

77

Print Arithmetic Expressions
 Specialization of an inorder

traversal
 print operand or operator

when visiting node
 print “(“ before traversing left

subtree
 print “)“ after traversing right

subtree

Algorithm inOrder(v)
if left (v) ≠ null || right(v) ≠ null

print(“(”)
if left (v) ≠ null

inOrder (left(v))
print(v.element ())
if right(v) ≠ null

inOrder (right(v))
if left (v) ≠ null || right(v) ≠ null

print (“)”)





2

a 1

3 b
((2  (a  1))  (3  b))

78

Evaluate Arithmetic Expressions
 Specialization of a postorder

traversal
 recursive method returning

the value of a subtree
 when visiting an internal

node, combine the values
of the subtrees

Algorithm evalExpr(v)
if isExternal (v)

return v.element ()
else

x  evalExpr(left(v))
y  evalExpr(right(v))
return v.element(x, y)





2

5 1

3 2

77

78

Lists and Iterators 9/10/2019

40

Inorder Traversal
 Application: draw a binary tree

from x(v) and y(v):
 x(v) = inorder rank of v
 y(v) = depth of v

 Example:
 v: 2, x, a, –, 1, +, 3, x, b
 x(v): 1, 2, 3, 4, 5, 6, 7, 8, 9
 y(v): 2, 1, 3, 2, 3, 0, 2, 1, 2

Algorithm ?

3

1

2

5

6

7 9

8

4





2

a 1

3 b

1. Sort v by inorder rank
2. Call create(1, n, 0)

create(f, t, d):
1. If (f = t) return v[f]
2. Pick j in [f..t] such that y[j] = d
3. Return (v[j], create(f, j-1, d+1),

create(j+1, t, d+1))
// as (root, leftChild, rightChild)

Possible Quiz Question
 Draw a binary tree from x(v)

and y(v):
 x(v) = inorder rank of v
 y(v) = postorder rank of v

 Example:
 v: 2, x, a, –, 1, +, 3, x, b
 x(v): 1, 2, 3, 4, 5, 6, 7, 8, 9
 y(v): 1, 5, 2, 4, 3, 9, 6, 8, 7

3

1

2

5

6

7 9

8

4





2

a 1

3 b

Algorithm ?

79

80

Lists and Iterators 9/10/2019

41

81

Euler Tour Traversal
 Generic traversal of a tree
 Travel each edge exactly twice.





2

5 1

3 2

L
B

R

e1 e2

e3
e4

e5 e6

e7 e8

Euler Tour = e1e3e3e4e7e7e8e8e4e1e2e5e5e6e6e2



Linked Structure for Trees
 A node is represented by

an object storing
 Element
 Parent node
 Sequence of children

nodes
 Node objects implement

the Position ADT

B

DA

C E

F

B

 

A D F



C



E

81

82

Lists and Iterators 9/10/2019

42

Linked Structure for Binary Trees
 A node is represented

by an object storing
 Element
 Parent node
 Left child node
 Right child node

 Node objects implement
the Position ADT

B

DA

C E

 

   

B

A D

C E



Array-Based Representation of
Binary Trees
 Nodes are stored in an array A

Node v is stored at A[pos(v)]
 pos(root) = 0
 if node is the left child of parent(node),

pos(node) = 2  pos(parent(node)) + 1
 if node is the right child of parent(node),

pos(node) = 2 pos(parent(node))  2

0

1 2

5 63 4

9 10

A

HG

FE

D

C

B

J

A B D G H ……

1 2 9 100

83

84

Lists and Iterators 9/10/2019

43

Exercise A-1.12
Given an array, A, of n − 2 unique integers in the range
from 1 to n, describe an O(n)-time method for finding
the two integers in the range from 1 to n that are not in
A. You may use only O(1) space in addition to the space
used by A.

1+2+…+n = n(n+1)/2
12+22+…+n2 = n(n+1)(2n+1)/6

Let the missing numbers be x and y, then
sum(A) + x + y = n(n+1)/2
sum(A2) + x2 + y2 = n(n+1)(2n+1)/6

Exercise A-1.4
An evil king has a cellar containing n bottles of
expensive wine, and his guards have just caught a spy
trying to poison the king’s wine. Fortunately, the guards
caught the spy after he succeeded in poisoning only
one bottle. Unfortunately, they don’t know which one.
To make matters worse, the poison the spy used was
very deadly; just one drop diluted even a billion to one
will still kill someone. Even so, the poison works slowly;
it takes a full month for the person to die. Design a
scheme that allows the evil king to determine exactly
which one of his wine bottles was poisoned in just one
month’s time while using a least number of taste testers
and expending at most O(log n) of his taste testers.

85

86

Lists and Iterators 9/10/2019

44

Exercise A-1.5
Suppose you are given a set of small boxes, numbered 1
to n, identical in every respect except that each of the
first i contain a pearl whereas the remaining n−i are
empty. You also have two magic wands that can each
test whether a box is empty or not in a single touch,
except that a wand disappears if you test it on an empty
box. Show that, without knowing the value of i, you can
use the two wands to determine all the boxes containing
pearls using at most o(n) wand touches. Express, as a
function of n, the asymptotic number of wand touches
needed.

Exercise A-1.6
Repeat the previous problem assuming that you now
have k magic wands, with k > 2 and k < log n. Express,
as a function of n and k, the asymptotic number of wand
touches needed to identify all the magic boxes containing
pearls.

87

88

