Ch 01. Analysis of Algorithms

What’s an Algorithm?

- Computer Science is about problem-solving using computers.
- Software is a solution to some problems.
- Algorithm is a recipe/design inside a software.
- Informally, an algorithm is a method for solving a well-specified computational problem.
- Algorithms become more and more important in digital age.
Homo Deus: A Brief History of Tomorrow

A 2016 top seller book by Historian Yuval Noah Harari

Central thesis:

- Organisms are algorithms, and as such homo sapiens (today’s human) may not be dominant in the future.
- Computers will do much better than organisms. Many professions will be out-of-date and labors become less worth.
- Harari believes that humanism will push humans to search for immortality, happiness, and power.
- Harari suggests the possibility of the replacement of humankind with a super-man, i.e. "homo deus", endowed with abilities such as eternal life and artificial intelligence.

Algorithms and Data Structures

- An algorithm is a step-by-step procedure for performing some task in a finite amount of time.
 - Typically, an algorithm takes input data and produces an output based upon it.

- A data structure is a systematic way of organizing and accessing data.
Experimental Studies of Algorithms

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition, noting the time needed:
- Plot the results

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult.
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used.
Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, \(n \)
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode

- High-level description of an algorithm
 - More structured than English prose
 - Less detailed than a real program
- Preferred notation for describing algorithms
- Easy map to real programming languages, or to primitive operations of CPU

Algorithm arrayMax(\(A, n \)):

Input: An array \(A \) storing \(n \geq 1 \) integers.
Output: The maximum element in \(A \).

\[
\begin{align*}
 &\text{currentMax} \leftarrow A[0] \\
 &\text{for } i \leftarrow 1 \text{ to } n - 1 \text{ do} \\
 &\quad \text{if currentMax} < A[i] \text{ then} \\
 &\quad\quad \text{currentMax} \leftarrow A[i] \\
 &\text{return currentMax}
\end{align*}
\]
Pseudocode Details

- **Control flow**
 - if ... then ... [else ...]
 - while ... do ...
 - for ... do ...
 - Indentation replaces braces

- **Method declaration**
 Algorithm `method (arg [, arg ...])`
 Input ...
 Output ...

- **Method call**
 `method (arg [, arg ...])`

- **Return value**
 `return expression`

- **Expressions:**
 - Assignment
 - Equality testing
 \[n^2 \textrm{ Superscripts and other mathematical formatting allowed} \]

The Random Access Machine (RAM) Model

A **RAM** consists of
- A CPU
- An potentially unbounded bank of **memory** cells, each of which can hold an arbitrary number or character
- Memory cells are numbered and accessing any cell in memory takes unit time
Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

Examples:
- Arithmetic operations
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Seven Important Functions

- Seven functions that often appear in algorithm analysis:
 - Constant \(\approx 1 \)
 - Logarithmic \(\approx \log n \)
 - Linear \(\approx n \)
 - \(N \)-Log-N \(\approx n \log n \)
 - Quadratic \(\approx n^2 \)
 - Cubic \(\approx n^3 \)
 - Exponential \(\approx 2^n \)

- In a log-log chart, the slope of the line corresponds to the growth rate
Functions Graphed Using “Normal” Scale

$g(n) = 1$

$g(n) = n \lg n$

$g(n) = 2^n$

$g(n) = \lg n$

$g(n) = n$

$g(n) = n^2$

$g(n) = n^3$

Counting Primitive Operations

Example: By inspecting the pseudocode, we can determine the minimum and maximum number of primitive operations executed by an algorithm, as a function of the input size.

Algorithm $\text{arrayMax}(A, n)$:

Input: An array A storing $n \geq 1$ integers.

Output: The maximum element in A.

1. $\text{currentMax} \leftarrow A[0]$
2. For $i \leftarrow 1$ to $n - 1$
 1. If $\text{currentMax} < A[i]$ then
 1. $\text{currentMax} \leftarrow A[i]$
3. Return currentMax

How many primitive operations at each line?

<table>
<thead>
<tr>
<th>Line</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3n-1</td>
<td>$3n-1$</td>
</tr>
<tr>
<td>2(n-1)</td>
<td>$2(n-1)$</td>
</tr>
<tr>
<td>0 to</td>
<td>0 to $2(n-1)$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Minimum: $2 + 3n-1 + 2(n-1) + 1 = 5n$

Maximum: $2 + 3n-1 + 4(n-1) + 1 = 7n - 2$
Estimating Running Time

- Algorithm `arrayMax` executes $7n - 2$ primitive operations in the worst case, $5n$ in the best case.

 Define:
 - $a = \text{Time taken by the fastest primitive operation}$
 - $b = \text{Time taken by the slowest primitive operation}$

- Let $T(n)$ be the worst-case time of `arrayMax`. Then

 $$a(5n) \leq T(n) \leq b(7n - 2)$$

- Hence, the running time $T(n)$ is bounded by two linear functions.

Running Time

- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus primarily on the **worst case running time**.

 - Easier to analyze
 - Crucial to applications such as games, finance and robotics
Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects $T(n)$ by a constant factor, but
 - Does not alter the growth rate of $T(n)$
- The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm arrayMax

Why Growth Rate Matters

<table>
<thead>
<tr>
<th>if runtime is...</th>
<th>time for $n + 1$</th>
<th>time for $2n$</th>
<th>time for $4n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c \lg n$</td>
<td>$c \lg (n + 1)$</td>
<td>$c (\lg n + 1)$</td>
<td>$c(\lg n + 2)$</td>
</tr>
<tr>
<td>$c n$</td>
<td>$c (n + 1)$</td>
<td>$2cn$</td>
<td>$4cn$</td>
</tr>
<tr>
<td>$cn \lg n$</td>
<td>$-cn \lg n + cn$</td>
<td>$2cn \lg n + 2cn$</td>
<td>$4cn \lg n + 4cn$</td>
</tr>
<tr>
<td>cn^2</td>
<td>$-cn^2 + 2cn$</td>
<td>$4cn^2$</td>
<td>$16cn^2$</td>
</tr>
<tr>
<td>cn^3</td>
<td>$-cn^3 + 3cn^2$</td>
<td>$8cn^3$</td>
<td>$64cn^3$</td>
</tr>
<tr>
<td>$c 2^n$</td>
<td>$c 2^{n+1}$</td>
<td>$c 2^{2n}$</td>
<td>$c 2^{4n}$</td>
</tr>
</tbody>
</table>

runtime quadruples when problem size doubles
Analyzing Recursive Algorithms

- Use a function, $T(n)$, to derive a **recurrence relation** that characterizes the running time of the algorithm in terms of smaller values of n.

```
Algorithm recursiveMax(A, n):
    Input: An array A storing $n \geq 1$ integers.
    Output: The maximum element in A.
    if $n = 1$ then
        return $A[0]$
    return max{recursiveMax(A, $n - 1$), A[$n - 1$]}
```

$$T(n) = \begin{cases}
3 & \text{if } n = 1 \\
T(n - 1) + 7 & \text{otherwise},
\end{cases}$$

Constant Factors

- The growth rate is minimally affected by
 - constant factors or
 - lower-order terms

- Examples
 - $10^2n + 10^5$ is a linear function
 - $10^2n^2 + 10^5n$ is a quadratic function
Big-Oh Notation

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$.
- We also say $g(n)$ is an asymptotic upper bound for $f(n)$.

Example: $2n + 10$ is $O(n)$

\[
2n + 10 \leq cn \\
(c - 2)n \geq 10 \\
\frac{n}{c - 2} \geq 10 \\
\text{Pick } c = 3 \text{ and } n_0 = 10
\]

Relatives of Big-Oh

- big-Omega
 - $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq cg(n)$ for $n \geq n_0$.

- big-Theta
 - $f(n)$ is $\Theta(g(n))$ if there are constants $c' > 0$ and $c'' > 0$ and an integer constant $n_0 \geq 1$ such that $c'g(n) \leq f(n) \leq c''g(n)$ for $n \geq n_0$.

Theorem: Θ is an equivalence relation.
(reflexive, symmetric, and transitive)
Intuition for Asymptotic Notation

big-Oh
- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$

big-Omega
- $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$

big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$

Example Uses of the Relatives of Big-Oh

- $5n^2$ is $\Omega(n^2)$
 - $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c g(n)$ for $n \geq n_0$
 - Let $c = 5$ and $n_0 = 1$

- $5n^2$ is $\Omega(n)$
 - $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c g(n)$ for $n \geq n_0$
 - Let $c = 1$ and $n_0 = 1$

- $5n^2$ is $\Theta(n^2)$
 - $f(n)$ is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. We have already seen the former, for the latter recall that $f(n)$ is $O(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \leq c g(n)$ for $n \geq n_0$
 - Let $c = 5$ and $n_0 = 1$
Big-Oh, Big-Theta, Big Omega Rules

- If \(f(n) \) is a polynomial of degree \(d \), then \(f(n) \) is \(O(n^d) \), i.e.,
 1. Drop lower-order terms
 2. Drop constant factors
- Use the smallest possible class of functions
 - Say “\(2n \) is \(O(n) \)” instead of “\(2n \) is \(O(n^2) \)”
- Use the simplest expression of the class
 - Say “\(3n + 5 \) is \(O(n) \)” instead of “\(3n + 5 \) is \(O(n) \)”

\[\Theta(n^3): \]
- \(n^3 \)
- \(5n^3 + 4n \)
- \(105n^3 + 4n^2 + 6n \)

\[\Theta(n^2): \]
- \(n^2 \)
- \(5n^2 + 4n + 6 \)
- \(n^2 + 5 \)

\[\Theta(\log n): \]
- \(\log n \)
- \(\log n^2 \)
- \(\log (n + n^3) \)
Math you need to Review

- Summations
- Powers
- Logarithms
- Proof techniques
- Basic probability

Properties of powers:
- \(a^{b+c} = a^b a^c\)
- \(a^{bc} = (a^b)^c\)
- \(a^b /a^c = a^{b-c}\)
- \(b = a^\log_a b\)
- \(b^c = a^c a^\log_a b\)

Properties of logarithms:
- \(\log_b(xy) = \log_b x + \log_b y\)
- \(\log_b (x/y) = \log_b x - \log_b y\)
- \(\log_b x^a = a \log_b x\)
- \(\log_b a = \log_x a / \log_x b\)

Functions in the order of faster growth rate

- \(c_0, (\log n)^c_1, n^{c_2}, c_3^n\)
 - \(c_0, c_1, c_2, c_3\) are positive constants;
 - \(c_3\) is a constant greater than 1.
Little oh

f(n) grows slower than g(n) (or g(n) grows faster than f(n)) if

\[\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0, \]

Notation: \(f(n) = o(g(n)) \)

pronounced "little oh"

Little omega

f(n) grows faster than g(n) (or g(n) grows slower than f(n)) if

\[\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty, \]

Notation: \(f(n) = \omega(g(n)) \)

pronounced "little omega"
Relation Summary:

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases}
\infty & \Rightarrow f(n) = \omega(g(n)) \\
C & \Rightarrow f(n) = \Theta(g(n)) \\
0 & \Rightarrow f(n) = o(g(n))
\end{cases}
\]

\[f(n) = \Omega(g(n)) \]

\[f(n) = O(g(n)) \]

Example: Which function grows faster?

\((\log n)^n\) and \(n^{\log n}\)

Example: Some functions are not comparable asymptotically.

\[f(n) = n(1 - \sin(90n))\]
\[g(n) = n(1 - \cos(90n))\]

Possible Quiz Problem

Decide the asymptotical relation of the following function pairs \(f\) and \(g\), i.e., \(f = O(g)\), or \(f = \Omega(g)\), or both?

- \(f = 10n^2 + n(\log n), \quad g = 100n(\log n)^2\)
- \(f = 100n + 3n^{2.5}, \quad g = n^2(\log n)\)
A Case Study in Algorithm Analysis

- Given an array of \(n \) integers, find the subarray, \(A[j..k] \) that maximizes the sum

\[
s_{j,k} = a_j + a_{j+1} + \cdots + a_k = \sum_{i=j}^{k} a_i
\]

- In addition to being an interview question for testing the thinking skills of job candidates, this maximum subarray problem also has applications in pattern analysis in digitized images.

A First (Slow) Solution

Compute the maximum of every possible subarray summation \(A[j, k] \) of the array \(A \) separately.

Algorithm MaxsubSlow

Input: An \(n \)-element array \(A \) of numbers, indexed from 1 to \(n \).

Output: The maximum subarray sum of array \(A \).

```plaintext
m \leftarrow 0 \quad // the maximum found so far
for j \leftarrow 1 \textbf{to} n \textbf{do}
    for k \leftarrow j \textbf{to} n \textbf{do}
        s \leftarrow 0 \quad // the next partial sum we are computing
        for i \leftarrow j \textbf{to} k \textbf{do}
            s \leftarrow s + A[i]
        if s > m then
            m \leftarrow s
return m
```

- The outer loop, for index \(j \), will iterate \(n \) times, its middle-inner loop, for index \(k \), will iterate \(j \sim n \) times, and the inner-most loop, for index \(i \), will iterate \(j \sim k \) times.
- Thus, the running time of the MaxsubSlow algorithm is \(O(n^3) \).
An Improved Algorithm

- A more efficient way to calculate these summations is to consider **prefix sums**
 \[S_i = a_1 + a_2 + \cdots + a_i = \sum_{i=1}^{t} a_i \]

- If we are given all such prefix sums (and assuming \(S_0 = 0 \)), we can compute any summation \(s_{j,k} \) in constant time as
 \[s_{j,k} = S_k - S_{j-1} \]

Example:

<table>
<thead>
<tr>
<th>i =</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2</td>
<td>-4</td>
<td>3</td>
<td>-1</td>
<td>5</td>
<td>6</td>
<td>-7</td>
<td>-2</td>
<td>4</td>
<td>-3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0</td>
<td>-2</td>
<td>-6</td>
<td>-3</td>
<td>-4</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>-2</td>
<td>2</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

Max = \(s_{6,3} = S_6 - S_2 = 7 - (-6) = 13 \).

An Improved Algorithm, cont.

- Compute all the prefix sums \(\mathcal{O}(n) \), time and space
- Then compute all the subarray sums \(\mathcal{O}(n^2) \)

Algorithm \texttt{MaxSubFaster} \((A)\):

\textbf{Input:} An \(n \)-element array \(A \) of numbers, indexed from \(1 \) to \(n \).
\textbf{Output:} The maximum subarray sum of array \(A \).

\[\begin{array}{l}
S_0 \leftarrow 0 \quad &// \text{the initial prefix sum} \\
\text{for } i \leftarrow 1 \text{ to } n \text{ do} \\
\quad S_i \leftarrow S_{i-1} + A[i] \\
\quad m \leftarrow 0 \quad &// \text{the maximum found so far} \\
\text{for } j \leftarrow 1 \text{ to } n \text{ do} \\
\quad \text{for } k \leftarrow j \text{ to } n \text{ do} \\
\quad \quad s = S_k - S_{j-1} \\
\quad \quad \text{if } s > m \text{ then} \\
\quad \quad \quad m \leftarrow s \\
\text{return } m
\end{array} \]
A Linear-Time Algorithm

- Instead of computing prefix sum \(S_t = s_{1,t} \), let us compute a maximum suffix sum, \(M_t \), which is the maximum of any subarray (including the empty one) ending at \(t \):

\[
M_t = \max \{0, \max_{j=1, \ldots, t} \{s_{j,t}\}\}
\]

- If \(M_t > 0 \), then it is the summation value for a maximum subarray that ends at \(t \), and if \(M_t = 0 \), then we can safely ignore any subarray that ends at \(t \).

- If we know all the \(M_t \) values, for \(t = 1, 2, \ldots, n \), then the solution to the maximum subarray problem would simply be the maximum of all these values.

A Linear-Time Algorithm, cont.

- If \(t = 0 \), then \(M_t = 0 \).

- For \(t \geq 1 \), to compute \(M_t \), the maximum subarray that ends at \(t \), we can add \(A[t] \) to \(M_{t-1} \). If the result is a positive sum, then we are done; if it is negative, we let \(M_t \) be 0, i.e., take the empty subarray, for there is no non-empty subarray that ends at \(t \) with a positive summation.

- So we can define \(M_0 = 0 \) and recursively

\[
M_t = \max \{0, M_{t-1} + A[t]\}
\]

Example:

<table>
<thead>
<tr>
<th>(t =)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A =)</td>
<td>-2</td>
<td>-4</td>
<td>3</td>
<td>-1</td>
<td>5</td>
<td>6</td>
<td>-7</td>
<td>-2</td>
<td>4</td>
<td>-3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(M =)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>13</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

\(\text{Max} = M_{11} = 13. \)
A Linear-Time Algorithm, cont.

Algorithm MaxsubFastest(A):
 Input: An n-element array A of numbers, indexed from 1 to n.
 Output: The maximum subarray sum of array A.
 $M_0 \leftarrow 0$ // the initial prefix maximum
 for $t \leftarrow 1$ to n do
 $M_t \leftarrow \max\{0, M_{t-1} + A[t]\}$
 $m \leftarrow 0$ // the maximum found so far
 for $t \leftarrow 1$ to n do
 $m \leftarrow \max\{m, M_t\}$
 return m

- The MaxsubFastest algorithm consists of two loops, which each iterate exactly n times and take $O(1)$ time in each iteration. Thus, the total running time of the MaxsubFastest algorithm is $O(n)$, time and space.

Possible Quiz Problem

Algorithm MaxsubFastest(A):
 Input: An n-element array A of numbers, indexed from 1 to n.
 Output: The maximum subarray sum of array A.
 $M_0 \leftarrow 0$ // the initial prefix maximum
 for $t \leftarrow 1$ to n do
 $M_t \leftarrow \max\{0, M_{t-1} + A[t]\}$
 $m \leftarrow 0$ // the maximum found so far
 for $t \leftarrow 1$ to n do
 $m \leftarrow \max\{m, M_t\}$
 return m

- How to find the values of j and k if $A[j, k]$ contains the maximum of every possible subarray summation of the array A in linear time?
Summations

\[\sum_{i=1}^{n} f(i) = f(1) + f(2) + \cdots + f(n-1) + f(n) \]

\[\sum_{i=1}^{n} i = \frac{n(n + 1)}{2} \]

\[\sum_{i=1}^{n} i^2 = \frac{2n^3 + 3n^2 + n}{6} \]

\[\sum_{i=1}^{n} i^k = \Theta(n^{k+1}) \]

\[\sum_{i=0}^{n} a^i = \frac{a^{n+1} - 1}{a - 1} \text{ for } a > 1 \]

\[\sum_{i=1}^{n} \frac{1}{i} = O(\ln n) \]

using Integral of $1/x$.

\[\sum_{i=1}^{n} \log i = O(n \log n) \]

using Stirling’s approximation

\[n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \]
The Factorial Function

Definition:

\[n! = 1 \cdot 2 \cdot 3 \cdots (n - 1) \cdot n \]

Stirling’s approximation:

\[n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \]

or \[\log(n!) = O(n \log n) \]

How to approve it?

Bounds of Factorial Function

Let \[\log n! = \sum_{x=1}^{n} \log x, \]

then \[\int_1^n \log x \, dx \leq \sum_{x=1}^{n} \log x \leq \int_0^n \log(x+1) \, dx \]

which gives \[n \log \left(\frac{n}{e}\right) + 1 \leq \log n! \leq (n+1) \log \left(\frac{n+1}{e}\right) + 1. \]

so \[e \left(\frac{n}{e}\right)^n \leq n! \leq e \left(\frac{n+1}{e}\right)^{n+1}. \]

\[n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n. \]
Average Case Analysis

- In worst case analysis of time complexity we select the maximum cost among all possible inputs of size n.
- In average case analysis, the running time is taken to be the average time over all inputs of size n.
 - Unfortunately, there are infinite inputs.
 - It is necessary to know the probabilities of all input occurrences.
 - The analysis is in many cases complex and lengthy.

What is the average case of executing “currentMax ← A[i]”?

```
Algorithm arrayMax(A, n):
    Input: An array A storing n ≥ 1 integers.
    Output: The maximum element in A.
    currentMax ← A[0]
    for i ← 1 to n − 1 do
        if currentMax < A[i] then
            currentMax ← A[i]
    return currentMax
```

Number of Assignments: the worst case is n. If numbers are randomly distributed, then the average case is 1+1/2 + 1/3 + 1/4 + ... + 1/n = O(log n).

This is because A[i] has only 1/i probability to be the max of A[1], A[2], ..., A[i], under the assumption that all numbers are randomly distributed.
Amortized Analysis

- The **amortized running time** of an operation within a series of operations is the worst-case running time of the series of operations divided by the number of operations.

- Example: A growable array, S. When needing to grow:
 a. Allocate a new array B of larger capacity.
 b. Copy A[i] to B[i], for i = 0, ..., n – 1, where n is size of A.
 c. Let A = B, that is, we use B as the array now supporting A.

Dynamic Array Description

- Let add(e) be the operation that adds element e at the end of the array.
- When the array is full, we replace the array with a larger one.
- But how large should the new array be?
 - **Incremental strategy**: increase the size by a constant c.
 - **Doubling strategy**: double the size.

Algorithm add(e)

```
if n = A.length then
  B ← new array of size ...
  for i ← 0 to n–1 do
    B[i] ← A[i]
  A ← B
  n ← n + 1
  A[n-1] ← e
```
Comparison of the Strategies

- We compare the incremental strategy and the doubling strategy by analyzing the total time $T(n)$ needed to perform a series of n add operations.
- We assume that we start with an empty list represented by a growable array of size 1.
- We call amortized time of an add operation the average time taken by an add operation over the series of operations, i.e., $T(n)/n$.

Incremental Strategy Analysis

- Over n add operations, we replace the array $k = n/c$ times, where c is a constant.
- The total time $T(n)$ of a series of n add operations is proportional to

$T(n) = n + c + 2c + 3c + 4c + \ldots + kc$

$= n + c(1 + 2 + 3 + \ldots + k)$

$= n + ck(k + 1)/2$

- Since c is a constant, $T(n)$ is $O(n + k^2)$, i.e., $O(n^2)$.
- Thus, the amortized time of an add operation, $T(n)/n$, is $O(n)$.
Doubling Strategy Analysis:
The Aggregate Method

- We replace the array $k = \log_2 n$ times.
- The total time $T(n)$ of a series of n push operations is proportional to

 $$
 n + 1 + 2 + 4 + 8 + \ldots + 2^k =
 n + 2^{k+1} - 1 =
 3n - 1
 $$
- $T(n)$ is $O(n)$.
- The amortized time of an add operation is $O(1)$.

Doubling Strategy Analysis:
The Accounting Method

- We view the computer as a coin-operated appliance that requires one cyber-dollar for a constant amount of computing time.
- For this example, we shall pay each add operation 3 cyber-dollars.
- Set a saving account with $s_0 = 0$ initially.
- The ith operation has a budget cost of $a_i = 3$, which is the amortized cost of each operation.
- The account value after the ith add operation is

 $$
 s_i = s_{i-1} + a_i - c_i
 $$

 where c_i is the actual cost.

Note: the account value s_i never goes under 0.
Doubling Strategy Analysis: The Accounting Method

- We shall pay each add operation $a_i = 3$ cyber-dollars, that is, it will have an amortized $O(1)$ amortized running time.
 - We over-pay each add operation not causing an overflow 2 cyber-dollars.
 - An overflow occurs when the array A has 2^i elements.
 - Thus, doubling the size of the array will require 2^i cyber-dollars.
 - These cyber-dollars are at the elements stored in cells 2^{i-1} through 2^i-1.

Summary

- Worst-case complexity: Given an upper bound at the worst case
- Average complexity: Assume a probability distribution of all inputs, give the complexity under this distribution.
- Amortized complexity: Compute the worst case of the sum of a sequence of operations, and then divide it by the number of operations.