Complexity Theory
Chapter 17

Problem: “Given a graph, is it connected?”
Each particular graph is an instance.
The size of the instance, n, is the number of bits needed to specify it.
An algorithm is polynomial-time if it uses at most kn^2 steps, for some constants k,c.

P is the class of all problems that have polynomial-time algorithms.

Definition of P

P. Problems for which there is a poly-time algorithm.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
<th>Algorithm</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULTIPLE</td>
<td>Is x a multiple of y?</td>
<td>Grade school division</td>
<td>$51, 17$</td>
<td>$51, 16$</td>
</tr>
<tr>
<td>RELPRIME</td>
<td>Are x and y relatively prime?</td>
<td>Euclid (300 BCE)</td>
<td>$34, 39$</td>
<td>$34, 51$</td>
</tr>
<tr>
<td>PRIMES</td>
<td>Is x prime?</td>
<td>AKS (2002)</td>
<td>31</td>
<td>11</td>
</tr>
<tr>
<td>EDIT-DISTANCE</td>
<td>Is the edit distance between x and y less than 5?</td>
<td>Dynamic programming</td>
<td>Neither</td>
<td>neither</td>
</tr>
<tr>
<td>LSOLVE</td>
<td>Is there a vector x that satisfies $Ax = b$?</td>
<td>Gauss-Edmonds elimination</td>
<td>$0, 1, 2, 4$</td>
<td>$3, 1, 5$</td>
</tr>
</tbody>
</table>

EXPTIME (or EXP)

- Problems that can be solved in exponential time ($O(2^{f(N)})$ for some polynomial function $f(N)$)

Definition of NP

NP. Problems whose solutions can be verified in polynomial time.

For these problems, an algorithm takes the problem plus a potential solution and verifies that it’s indeed a solution in polynomial time $O(N^k)$ for some constant k.

Certification algorithm intuition:
- Certifier views things from “managerial” viewpoint.
- Certifier doesn’t solve the problem on its own; rather, it checks a proposed solution t is indeed a solution.

Def. Algorithm $C(s, t)$ is a certifier for a decision problem X if for every instance s, it has a yes answer iff there exists a certificate t such that $C(s, t) = \text{yes}$.

NP. Problems for which there exists a poly-time certifier.

Remark. NP stands for nondeterministic polynomial-time, which is an equivalent definition of the same class of problems.
Certifiers and Certificates: Composite

COMPOSITES. Given an integer \(s \), is \(s \) composite?

Certificate. A nontrivial factor \(t \) of \(s \). Note that such a certificate exists iff \(s \) is composite. Moreover \(|t| \leq |s| \).

Certifier.

```java
boolean C(s, t) {
    if (t <= 1 or t >= s)
        return false
    else if (remainder(s, t) == 0)
        return true
    else
        return false
}
```

Instance. \(s = 437,669 \).

Certificate. \(t = 541 \) or \(809 \).

Conclusion. COMPOSITES is in NP.

Every problem in P is also in NP.

Certifiers and Certificates: Satisfiability

SAT. Given a formula \(\Phi \), is there a satisfying assignment?

Certificate. An assignment of truth values to the \(n \) boolean variables.

Certifier. Check that each clause in \(\Phi \) has at least one true literal.

Ex.

\[
((\pi \lor x_1 \lor x_3) \land (\pi \lor x_1 \lor x_3) \land (\pi \lor x_1 \lor x_3) \land (\pi \lor x_1 \lor x_3))
\]

Instance s

\[
\begin{align*}
\pi & = 1, \\
x_1 & = 1, \\
x_2 & = 0, \\
x_3 & = 1
\end{align*}
\]

Certificate t

Conclusion. SAT is in NP.

Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph \(G = (V, E) \), does there exist a simple cycle \(C \) that visits every node?

Certificate. A permutation of the \(n \) nodes.

Certifier. Check that the permutation contains each node in \(V \) exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.

P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.

EXP. Decision problems for which there is an exponential-time algorithm.

NP. Decision problems for which there is a poly-time certifier.

Claim. \(P \subseteq NP \).

Pf. Consider any problem \(X \) in \(P \).

\[\text{By definition, there exists a poly-time algorithm } A(s) \text{ that solves } X. \]

\[\text{Certificate: } t = \varepsilon, \text{ certifier } C(s, t) = A(s). \]

Claim. \(NP \subseteq EXP \).

Pf. Consider any problem \(X \) in \(NP \).

\[\text{By definition, there exists a poly-time certifier } C(s, t) \text{ for } X. \]

\[\text{To solve input } s, \text{ run } C(s, t) \text{ on all strings } t \text{ with } |t| \leq p(|s|), \text{ where } |t| \text{ and } |s| \text{ are the sizes of } s \text{ and } t, \text{ respectively.} \]

\[\text{Return } yes, \text{ if } C(s, t) \text{ returns } yes \text{ for any of these.} \]

The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

\[\text{Is solving a problem as easy as verifying its solution (upto a poly-time difference)?} \]

\[\text{Clay$1 million prize.} \]

\[\text{If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...} \]

\[\text{If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...} \]

Consensus opinion on P = NP? Probably no.
Polynomial-Time Reduction

Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to the blackbox that solves problem Y.

Notation. $X \leq_P Y$.

That is, if the code of Y is B, we may obtain the code A which uses B to solve X (the time spent by B is not cared).

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time. That is, if Y is easy, so is X.

Establish intractability. If $X \leq_P Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time. That is, if X is hard, so is Y.

Establish equivalence. If $X \leq_P Y$ and $Y \leq_P X$, we use notation $X \equiv_P Y$. up to cost of reduction.

Reduction By Simple Equivalence

Basic reduction strategies:

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Clique

Clique: Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each pair (x, y) of points in S, (x, y) is an edge of E?

Ex. Is there an independent set of size ≥ 6? Yes. Ex. Is there an independent set of size ≥ 7? No.

Independent Set

INDEPENDENT SET: Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most one of its endpoints is in S?

Ex. Is there an independent set of size ≥ 6? Yes. Ex. Is there an independent set of size ≥ 7? No.

Vertex Cover

VERTEX COVER: Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S?

Ex. Is there a vertex cover of size ≤ 4? Yes. Ex. Is there a vertex cover of size ≤ 3? No.
Vertex Cover and Independent Set

Claim. \textsc{Vertex-Cover} \equiv \textsc{Independent-Set}.

\textbf{Pf.} We show \(S\) is an independent set iff \(V - S\) is a vertex cover.

\[\begin{align*}
\text{Claim. } & \textsc{Vertex-Cover} \equiv \textsc{Independent-Set}. \\
\text{Pf.} & \quad \text{We show } S \text{ is an independent set iff } V - S \text{ is a vertex cover.} \\
& \Rightarrow \\
& \quad \text{Let } S \text{ be any independent set.} \\
& \quad \text{Consider an arbitrary edge } (u, v). \\
& \quad S \text{ independent } \Rightarrow u \in S \text{ or } v \in S \Rightarrow u \in V - S \text{ or } v \in V - S. \\
& \quad \text{Thus, } V - S \text{ covers } (u, v). \\
& \Leftarrow \\
& \quad \text{Let } V - S \text{ be any vertex cover.} \\
& \quad \text{Consider two nodes } u \in S \text{ and } v \in S. \\
& \quad \text{Observe that } (u, v) \notin E \text{ since } V - S \text{ is a vertex cover.} \\
& \quad \text{Thus, no two nodes in } S \text{ are joined by an edge } \Rightarrow S \text{ independent set.}\]

Set Cover

\textsc{Set-Cover}: Given a set \(U\) of elements, a collection \(S_1, S_2, \ldots, S_m\) of subsets of \(U\), and an integer \(k\), does there exist a collection of \(\leq k\) of these sets whose union is equal to \(U\)?

Sample application.
- \(m\) available pieces of software.
- \(U\) of \(n\) capabilities that we would like our system to have.
- The \(i\)th piece of software provides the set \(S_i \subseteq U\) of capabilities.
- Goal: achieve all \(n\) capabilities using fewest pieces of software.

\[\begin{align*}
U &= \{1, 2, 3, 4, 5, 6, 7\} \\
k &= 2 \\
S_1 &= \{3, 7\} \\
S_2 &= \{2, 4\} \\
S_3 &= \{3, 4, 5, 6\} \\
S_4 &= \{5\} \\
S_5 &= \{1\} \\
S_6 &= \{1, 2, 6, 7\}
\end{align*}\]

Vertex Cover Reduces to Set Cover

Claim. \textsc{Vertex-Cover} \leq_p \textsc{Set-Cover}.

\textbf{Pf.} Given a \textsc{Vertex-Cover} instance \(G = (V, E), k\), we construct a \textsc{set-cover} instance whose size equals the size of the vertex cover instance.

Construction.
- Create \textsc{Set-Cover} instance:
 - \(k = k\), \(U = E\), \(S_v = \{e \in E : e \text{ incident to } v\}\).
 - Set-cover of size \(\leq k\) iff vertex cover of size \(\leq k\).

\[\begin{align*}
\text{Vertex-Cover} & \quad \textsc{Set-Cover} \\
U &= \{1, 2, 3, 4, 5, 6, 7\} \\
k &= 2 \\
S_1 &= \{3, 7\} \\
S_2 &= \{2, 4\} \\
S_3 &= \{3, 4, 5, 6\} \\
S_4 &= \{5\} \\
S_5 &= \{1\} \\
S_6 &= \{1, 2, 6, 7\}
\end{align*}\]

NP-Hard and NP-Complete

\textbf{NP-hard}: A problem \(Y\) is \(NP\)-hard if, for every problem \(X\) in \(NP\), \(X \leq_p Y\). A problem \(Y\) is \(NP\)-complete, if it is \(NP\)-hard and in \(NP\).

\textbf{Theorem}. Suppose \(Y\) is an \(NP\)-complete problem. Then \(Y\) is in \(P\) iff \(P = NP\).

\textbf{Pf. \Leftarrow} Suppose \(Y\) is in \(P\), i.e., can be solved in poly-time.
- Let \(X\) be any problem in \(NP\). Since \(X \leq_p Y\), we can solve \(X\) in poly-time. This implies \(NP \subseteq P\).
- We already know \(P \subseteq NP\). Thus \(P = NP\). \(\blacksquare\)

\textbf{Fundamental question}. Do there exist "natural" \(NP\)-complete problems?
NP-hard

NP-complete

NP

P

Hamilton cycle
Graph 3-coloring
Satisfiability
Maximum clique

Halting problem
Factoring
Graph isomorphism
Minimum circuit size

Graph connectivity
Primality testing
Matrix determinant
Linear programming

HALTING PROBLEM

SAT

SAT is NP-Complete

- The Cook-Levin theorem (or just Cook’s theorem) proves that SAT is NP-complete
- For details, see: http://en.wikipedia.org/wiki/Cook-Levin_theorem
- Need to show:
 - SAT is in NP
 - All other problems in NP can be reduced to SAT

Establishing NP-Completeness

Remark. Once we establish first “natural” NP-complete problem, others fall like dominoes.

Recipe to establish NP-completeness of problem Y.
- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that \(X \leq_P Y \).

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that \(X \leq_P Y \) then Y is NP-complete.

Pf. Let W be any problem in NP. Then \(W \leq_P X \leq_P Y \).

- By transitivity, \(W \leq_P Y \).
- Hence Y is NP-complete.

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.

Pf. Suffices to show that SAT \(\leq_P \) 3-SAT since 3-SAT is in NP.
- Let K be any circuit representing the formula of SAT.
- Create a 3-SAT variable \(x_i \) for each circuit element i.
- Make circuit compute correct values at each node:
 - \(x_i = x_j \) \(\Rightarrow \) add 2 clauses: \(x_i, x_j \) and \(\overline{x_i}, \overline{x_j} \)
 - \(x_i = \overline{x_j} \) \(\Rightarrow \) add 3 clauses: \(\overline{x_i}, x_j, x_i \cup x_j \)
 - \(x_i = x_j \) \(\Rightarrow \) add 3 clauses: \(x_i, \overline{x_j}, x_i \cup \overline{x_j} \)
- Hard-coded input values and output value.
 - \(x_0 = 0 \) \(\Rightarrow \) add 1 clause: \(\overline{x_0} \)
 - \(x_0 = 1 \) \(\Rightarrow \) add 1 clause: \(x_0 \)
- Final step: turn clauses of length < 3 into clauses of length exactly 3 by introducing new variables.

3-SAT Reduces to Independent Set

Claim. 3-SAT \(\leq_P \) INDEPENDENT-SET.

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance \((G, k) \) of INDEPENDENT-SET that has an independent set of size \(k \) iff \(\Phi \) is satisfiable.

Construction.
- \(G \) contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

Ex:
- \(C_1 = x_1 \vee \overline{x_2} \vee x_3 \)
- \(C_2 = \overline{x_1} \vee x_2 \vee \overline{x_3} \)
- \(C_3 = \overline{x_1} \vee \overline{x_2} \vee x_3 \)

Yes: \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false} \).
3-SAT Reduces to Independent Set

Claim. \(G \) contains independent set of size \(k = |\varnothing| \) iff \(\varnothing \) is satisfiable.

Pf. \(\Rightarrow \) Let \(S \) be independent set of size \(k \).
- \(S \) must contain exactly one vertex in each triangle.
- Set these literals to true. ... and any other variable in a consistent way.
- Truth assignment is consistent and all clauses are satisfied.

Pf. \(\Leftarrow \) Given satisfying assignment, select one true literal from each triangle. This is an independent set of size \(k \).

Review

- **Basic reduction strategies.**
 - Simple equivalence: \(\text{INDEPENDENT-SET} \equiv \text{VERTEX-COVER} \).
 - Special case to general case: \(\text{VERTEX-COVER} \leq_p \text{SET-COVER} \).
 - Encoding with gadgets: \(\text{3-SAT} \leq_p \text{INDEPENDENT-SET} \).

- **Transitivity.** If \(X \leq_p Y \) and \(Y \leq_p Z \), then \(X \leq_p Z \).
 - Pf idea. Compose the two algorithms.
- **Ex:** \(\text{3-SAT} \leq_p \text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER} \leq_p \text{SET-COVER} \).

Detection, Reporting, and Optimization Problems

- For the subset sum problem:
 - Detection—Is there a subset of the numbers that adds up to a specific value \(k \)? (Decision Problems)
 - Reporting—Find a subset of the numbers that adds up to the specific value \(k \) (if such a subset exists)
 - Optimization—Find a subset of the numbers with a total as close to the specific value \(k \) as possible

Detection \(\leq_p \) Reporting

- (Detection is reducible to reporting)
- Suppose algorithm \(\text{Report}(k) \) returns a subset with values that add up to \(k \)
- \(\text{Detect}(k) \) calls \(\text{Report}(k) \) and returns true if \(\text{Report}(k) \) finds such a subset

Reporting \(\leq_p \) Optimization

- (Reporting is reducible to optimization)
- Suppose algorithm \(\text{Optimize}(k) \) returns a subset with sum as close as possible to \(k \)
- \(\text{Report}(k) \) calls \(\text{Optimize}(k) \) and returns the subset if its total value is \(k \)

Reporting \(\leq_p \) Detection

- (Reporting is reducible to detection)
- Suppose algorithm \(\text{Detect}(k) \) returns true if there is a subset with sum \(k \)
Reporting \(\leq_p \) Detection Algorithm

1. Call Detect\(k \) on the whole set to see if a solution is even possible
2. If a solution is possible, for each value \(V_i \) in the set:
 a. Remove \(V_i \) from the set and call Detect\(k \) for the remaining set to see if there is a subset with total value \(k \)
 b. If Detect\(k \) returns false, restore \(V_i \) to the set, and continue the loop at Step 2
 c. If Detect\(k \) returns true, leave \(V_i \) out of the set, and continue the loop at Step 2

When the loop finishes, the remaining values make a set with total value \(k \)

Optimization \(\leq_p \) Reporting

- (Optimization is reducible to reporting)
- Suppose algorithm Report\(k \) returns a subset with total value \(k \) (if one exists)

1. For \(i = 0 \) to \(N \), where \(N \) is the number of items in the set:
 a. If Report\(k + i \) returns a subset, Optimize\(k \) returns that subset.
 b. If Report\(k - i \) returns a subset, Optimize\(k \) returns that subset.
 c. Continue the loop in Step 1.

Vertex Cover Problem

- Detection: Does there exist a vertex cover of size \(\leq k \)?
- Reporting: Find a vertex cover of size \(\leq k \).
- Optimization problem. Find vertex cover of minimum cardinality.

- Self-reducibility: Detection, Reporting, and Optimization Problems are all equivalent \((r_3) \)
- Applies to all (NP-complete) problems.
 - Justifies our focus on decision problems.

Vertex Cover Problem

- Ex: Reduce Optimization to Detection
 - To find min cardinality vertex cover.
 - (Binary) search for cardinality \(k^* \) of min vertex cover.
 - Find a vertex \(v \) such that \(G - \{ v \} \) has a vertex cover of size \(\leq k^* - 1 \).
 - any vertex in any min vertex cover will have this property
 - Include \(v \) in the vertex cover.
 - Recursively find a min vertex cover in \(G - \{ v \} \).

NP-Complete Problems

- More than 3,000 known NP-complete problems
 - Art gallery problem—Find the minimum number of guards needed
 - Bin packing—Pack objects in the fewest bins possible
 - Bottleneck TSP—Find a Hamiltonian path with minimum largest link cost
 - Chromatic number (or vertex coloring)—Given a graph, find the smallest number of colors needed to color the graph’s nodes. (The graph is not necessarily planar.)
 - Clique—in a graph, find the largest clique (mutually connected nodes)
 - Clique cover problem—Given a number \(k \), find a way to partition a graph into \(k \) cliques.

NP-Complete Problems, Part 2

- Degree-constrained spanning tree—Find a spanning tree with a given maximum degree
- Dominating set—Given a graph, find a set of nodes \(S \) so that every other node is adjacent to one of the nodes in the set \(S \)
- Hamiltonian cycle—Determine whether there is a path through a graph that visits every node exactly once and then returns to its starting point
- Hamiltonian path (HAM)—Determine whether there is a path through a graph that visits every node exactly once
- Longest path—Find the longest path that doesn’t revisit any nodes
- Traveling Salesman Problem (TSP)—Determine whether there is a path through a graph that visits every node exactly once with minimal distance.
NP-Complete Problems, Part 3

• Knapsack—Given a knapsack with a capacity and a set of objects with weights and values, find the set of objects with the largest possible value that fits in the knapsack.
• Maximum independent set—Find the largest set of nodes where no two nodes in the set are connected by a link
• Maximum leaf spanning tree—Find a spanning tree that has the maximum possible number of leaves
• Minimum leaf spanning tree—Find a spanning tree that has the minimum possible number of leaves
• Minimum degree spanning tree—Find a spanning tree with the minimum possible degree

NP-Complete Problems, Part 4

• Partitioning—Given a set of integers, find a way to divide the values into two sets with the same total value
• Satisfiability (SAT)—Given a boolean expression containing variables, find an assignment of true and false to the variables to make the expression true
• Three-satisfiability (3SAT)—Given a boolean expression in 3CNF; find an assignment of true and false to the variables to make the expression true
• Subset sum—Given a set of integers, find a subset with a given total value

NP-Complete Problems, Part 5

• Traveling salesman problem (TSP)—Given a list of cities and the distances between them, find the shortest possible route that visits all the cities and returns to the starting city
• Unbounded knapsack—Similar to the knapsack problem, except that you can select any item multiple times
• Vehicle routing—Given a set of customers and a fleet of vehicles, find the most efficient routes for the vehicles to visit all the customers
• Vertex cover—Find a minimal set of vertices so that every link in the graph touches one of the selected vertices

Subset Sum

SUBSET-SUM. Given a set of natural numbers \(w_1, \ldots, w_n \) and an integer \(W \), is there a subset that sums to \(W \)?

Ex: \(\{ 1, 4, 6, 16, 256, 1040, 1041, 1093, 1284, 1344 \} \), \(W = 3754 \).

Yes: \(1 \cdot 16 + 64 \cdot 1040 + 1093 + 1284 = 3754 \).

Remark. With arithmetic problems, input integers are encoded in binary. Polynomial reduction must be polynomial in the size of binary encoding.

Claim. 3-SAT \(\leq_p \) SUBSET-SUM.

PF. Given an instance \(\phi \) of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff \(\phi \) is satisfiable.

Observation. All problems below are NP-complete and polynomial reduce to one another!
Set Partition

PARTITION. Given a set of natural numbers \(w_1, \ldots, w_n\), is there a subset that adds up to exactly half sum of all \(w_i\)?

Claim. \(\text{PARTITION} \leq_P \text{SUBSET-SUM} \).

Pf. \(\text{PARTITION} \) is a special of \(\text{SUBSET-SUM} \).

Claim. \(\text{SUBSET-SUM} \leq_P \text{PARTITION} \).

Pf.

Bin Packing

BIN-PACKING. Given a set \(S\) of real numbers \(w_1, \ldots, w_n\), \(0 < w_i \leq 1\), and integer \(K\), is there a partition of \(S\) into \(K\) subsets such that each subset adds up no more than 1?

Claim. \(\text{PARTITION} \leq_P \text{BIN-PACKING} \).

Pf.

The Knapsack Problem

Input
- Capacity \(K\)
- \(n\) items with weights \(w_i\) and values \(v_i\)

Goal
- Output a set of items \(S\) such that
 - the sum of weights of items in \(S\) is at most \(K\)
 - and the sum of values of items in \(S\) is maximized

Asymmetry of NP

Asymmetry of NP. We only need to have short proofs of yes instances.

Ex 1. \(\text{SAT vs. UNSAT} \).
- Can prove a CNF formula is satisfiable by giving such an assignment.
- How could we prove that a formula is not satisfiable?

Ex 2. \(\text{HAM-CYCLE vs. NO-HAM-CYCLE} \).
- Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.
- How could we prove that a graph is not Hamiltonian?

Remark. \(\text{SAT}\) is NP-complete, but how do we classify \(\text{UNSAT}\)?

NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
- \(\text{SAT, HAM-CYCLE, COMPOSITES}\)

Def. Given a decision problem \(X\), its complement \(\overline{X}\) is the same problem with the yes and no answers reverse.

Ex. \(X = \{ 0, 1, 4, 6, 8, 9, 10, 12, 14, 15, \ldots \} \) -- composite numbers
- \(X' = \{ 2, 3, 5, 7, 11, 13, 17, 23, 29, \ldots \} \) -- primes

Equivalence: Since \(X \cup X' = \mathbb{N}\), we have \(X = \overline{X'}\).

co-NP. Complements of decision problems in NP.
- \(\text{TAUTOLEGNY, NO-HAM-CYCLE, PRIMES}\)

NP = co-NP?

Fundamental question. Does \(NP = co-NP\)?
- Do yes instances have succinct certificates if no instances do?
- Consensus opinion: no.

Theorem. If \(NP = co-NP\), then \(P = NP\).

Pf idea.
- \(P\) is closed under complementation.
- If \(P = NP\), then \(NP\) is closed under complementation.
- In other words, \(NP = co-NP\).
- This is the contrapositive of the theorem.