Chapter 14
Randomized Algorithms

11/19/2015

Deterministic Algorithms

Goal: Prove for all input instances the algorithm solves the problem correctly and the number of steps is bounded by a polynomial in the size of the input.

Randomized Algorithms

• In addition to input, algorithm takes a source of random numbers and makes random choices during execution;
• Behavior can vary even on a fixed input;

Motivation for Randomized Algorithms

• Simplicity;
• Performance;
• Reflects reality better (Online Algorithms);
• For many hard problems it helps obtain better complexity bounds when compared to deterministic approaches;

Types of Randomized algorithms

• Las Vegas
• Monte Carlo

Monte Carlo

• The time is limited by an upper bound.
• It may produce incorrect answer!
• We are able to bound its error by probability.
• By running it many times on independent random variables, we can make the failure probability arbitrarily small at the expense of running time.
Monte Carlo Example

- Suppose we want to decide a n-place function always returns zero, i.e.,
 \[F(x_1, x_2, \ldots, x_n) = 0 \] for all xi?
- We may randomly choose values for xi and see if \(F(x_1, x_2, \ldots, x_n) = 0 \).
- It’s impossible to exhaust all values of xi.
- However, if we have checked enough times and \(F(x_1, x_2, \ldots, x_n) \) is always 0, then we have high probability the answer is true.

Monte Carlo Algorithms

Goal: Prove that the algorithm
- with high probability solves the problem correctly;
- for every input the number of steps is bounded by a polynomial in the input size.

Note: The expectation is over the random choices made by the algorithm.

Las Vegas

- Always gives the true answer.
- Running time is random.
- Running time is bounded.
- Randomized Quicksort is a Las Vegas algorithm.

Las Vegas Algorithms

Goal: Prove that for all input instances the algorithm solves the problem correctly and the expected number of steps is bounded by a polynomial in the input size.

Note: The expectation is over the random choices made by the algorithm.

Probabilistic Analysis of Algorithms

Input is assumed to be from a probability distribution.

Goal: Show that for all inputs the algorithm works correctly and for most inputs the number of steps is bounded by a polynomial in the size of the input.
QuickSort

Select: pick an arbitrary element x in S to be the pivot.

Partition: rearrange elements so that elements with value less than x go to List L to the left of x and elements with value greater than x go to the List R to the right of x.

Recursion: recursively sort the lists L and R.

Worst Case Partitioning of QuickSort

Best Case Partitioning of QuickSort

Average Case of QuickSort

Randomized QuickSort

Randomized-Partition(A, p, r)
1. i \leftarrow \text{Random}(p, r)
2. exchange A[i] \leftrightarrow A[r]
3. return Partition(A, p, r)

Randomized-QuickSort(A, p, r)
1. if p < r
2. then q \leftarrow \text{Randomized-Partition}(A, p, r)
3. \text{Randomized-QuickSort}(A, p, q-1)
4. \text{Randomized-QuickSort}(A, q+1, r)

Randomized QuickSort

- The pivot element is equally likely to be any of input elements.
- For any given input, the behavior of Randomized QuickSort is determined not only by the input but also by the random choices of the pivot.
- We add randomization to QuickSort to obtain for any input the expected performance of the algorithm to be good.
Expectation

If a random variable X has probability p_i to be a_i, the expected value of X is $E[X] = p_1a_1 + p_2a_2 + \ldots + p_na_n$.

E.g., the expected value of a die is $E[X] = (1+2+3+4+5+6)/6 = 3.5$.

If X_1, X_2, \ldots, X_n are random variables, then

$$E[X_1 + X_2 + \ldots + X_n] = E[X_1] + E[X_2] + \ldots + E[X_n]$$

Notation

- Rename the elements of A as z_1, z_2, \ldots, z_n, with z_i being the ith smallest element (Rank "i").
- Define the set $Z_{ij} = \{z_i, z_{i+1}, \ldots, z_j\}$ be the set of elements between z_i and z_j, inclusive.

Expected Number of Total Comparisons in PARTITION

Let $X_i = I\{z_i \text{ is compared to } z_j\}$ indicator random variable

Let X be the total number of comparisons performed by the algorithm. Then

$$X = \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij}$$

The expected number of comparisons performed by the algorithm is

$$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}]$$

by linearity of expectation

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared to } z_j\}$$

Comparisons in PARTITION

Observation 1: Each pair of elements is compared at most once during the entire execution of the algorithm
- Elements are compared only to the pivot point!
- Pivot point is excluded from future calls to PARTITION

Observation 2: Only the pivot is compared with elements in both partitions

$Z_{ij} = \{z_i, z_{i+1}, \ldots, z_j\}$

Elements between different partitions are never compared

Expected Number of Comparisons in PARTITION

$\Pr\{Z_i \text{ is compared with } Z_j\}$

$= \Pr\{Z_i \text{ or } Z_j \text{ is chosen as pivot before other elements in } Z_{ij} = 2 / (j-i+1)$

$$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared to } z_j\}$$

$$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared to } z_j\}$$

$$= O(n \log n)$$
Pattern matching

- **Pattern string**: \(Y \) length: \(m \)
- **Text string**: \(X \) length: \(n \), \(n \geq m \)

To find the first occurrence of \(Y \) as a consecutive substring of \(X \).

Assume that \(X \) and \(Y \) are binary strings.

- e.g. \(Y = 01001 \), \(X = 10100111 \)

- Straightforward method: \(O(mn) \)
- The randomized algorithm: \(O(m+n) \) with a mistake of small probability \(1/n \).

Fingerprints of binary strings

- Similar to the idea of hashing.
- Let \(p \) be a randomly chosen prime number less than \(2^{mn} \).
- Notation: \((x_i)_p = x_i \mod p \)

- **Fingerprints** of \(X(i) \) and \(Y \):
 \[
 B(Y) = B(Y) \mod p = ((y_1 \cdot 2^n \cdot y_2 \cdot 2^{n-1} + \cdots + y_m \cdot 2^0) \mod p)
 \]
 \[
 B_p(Y) = B(Y) \mod p = ((y_1 \cdot 2^n \cdot y_2 \cdot 2^{n-1} + \cdots + y_m \cdot 2^0) \mod p) \mod p
 \]

- If \(X(i) = Y \), then \(B_p(X(i)) = B_p(Y) \), but not vice versa.

Examples for using fingerprints

- Example: \(Y = 10110 \), \(X = 110110 \)
 - Suppose \(m = 5 \), \(n = 6 \), \(t = n - m + 1 = 2 \)
 - Suppose \(p = 3 \).
 - \(B(Y) = 22 \mod 3 = 1 \)
 - \(B_p(Y) = 19 \mod 3 = 1 \)
 - \(X(1) \neq Y \) WRONG!
 - If \(B_p(X(i)) \neq B_p(Y) \), then \(Y \neq X(i) \).
 - If \(B_p(X(i)) = B_p(Y) \), we may do a bit by bit checking, or try different \(p \).

A randomized algorithm for pattern matching

- **Input**: A text \(X = x_1 \ldots x_n \), a pattern \(Y = y_1 \ldots y_m \)
- **Output**:
 - (1) No, there is no consecutive substring in \(X \) which matches with \(Y \).
 - (2) Yes, \(X(i) = x_{i-1} \ldots x_{i+m-1} \) matches with \(Y \) which is the first occurrence in \(X \).

If the answer is “No”, there is no mistake.
If the answer is “Yes”, there is some probability that a mistake is made.
Monte Carlo Random Pattern Matching

Step 1: Pick a random prime $p < 2mn^2$ and let $i = 1$.

Step 2: If $B(X(i))_p \neq (B(Y))_p$, then go to step 3.

return X(i) as the answer (probably right).

Step 3: If $i = n-m+1$, return "No, there is no consecutive substring in X which matches with Y."

$$i = i + 1.$$

Go to Step 2.

Source of error:

$B(X(i))_p = (B(Y))_p$ but $X(i) \neq Y$ (or $B(X(i)) \neq B(Y)$).

What is the probability for this error?

How often does a mistake occur?

- If a mistake occurs in X and Y(i), then $B(X) - B(Y(i)) = 0$, and $B(X(i))_p = (B(Y))_p$, or p divides $|B(X) - B(Y(i))|$.

- Let $Q = \prod_{i \text{ where } p \text{ divides } |B(X) - B(Y(i))|} |B(X) - B(Y(i))|$.

- $Q < 2^{nm}$

Reason: $B(Y) < 2^m$, and at most $(n-m+1)$ $B(X(i))'$s

Theorem for number theory

- **Theorem:** If $u \geq 29$ and $a < 2^u$, then a has fewer than $\pi(u)$ different prime number divisors, where $\pi(u)$ is the number of prime numbers smaller than u, and approximately $\pi(u) = u/\ln(u)$.

- Assume $nm \geq 29$.

 $Q < 2^{nm}$

 $\Rightarrow Q$ has fewer than $\pi(nm)$ different prime number divisors.

- If p is a prime number selected from $\{1, 2, \ldots, M = 2mn\}$, the probability that p divides Q is less than:

 $\frac{x(\ln m)}{\pi(M)} \cdot \frac{(\ln m) / \ln nm}{1}$

Las Vegas Random Pattern Matching

Step 1: min = 1; j = 1;

Step 2: Pick a random prime $p < 2mn^2$ and let $i = \text{min}$;

Step 3: If $B(X(i))_p \neq (B(Y))_p$, then go to step 3;

Step 4: if $j = K$ goto Step 6 else $j = j+1$;

Step 5: If $i = n-m+1$, return "No, there is no consecutive substring in X which matches with Y."

 $\min = i = i + 1$.

 Go to Step 3.

Step 6: If $X(i) = Y$ return $X(i)$ as the answer; else go to step 4

An example for the algorithm

- $Y = 10110$, $X = 100111$, $P_1 = 3$, $P_2 = 5$

 $B_3(Y) = (22)_3 = 1$
 $B_5(Y) = (22)_5 = 2$
 $B_3(X(1)) = (19)_3 = 1$
 $B_5(X(1)) = (19)_5 = 4$

 $\Rightarrow X(1) \neq Y$

Choose one more prime number, $P_3 = 7$

$B_7(Y) = (22)_7 = 1$

$B_7(X(2)) = (7)_7 = 0$

$\Rightarrow X(2) \neq Y$

Monte Carlo versus Las Vegas

- A Monte Carlo algorithm runs produces an answer that is correct with non-zero probability, whereas a Las Vegas algorithm always produces the correct answer.

- The running time of both types of randomized algorithms is a random variable whose expectation is bounded say by a polynomial in terms of input size.

- These expectations are only over the random choices made by the algorithm independent of the input. Thus independent repetitions of Monte Carlo algorithms drive down the failure probability exponentially.