Chapter 8
Greedy Algorithms

First-Cut Techniques
- The Greedy Approach
- Graph Traversal

A common characteristic of both greedy algorithms and graph traversal is that they are fast, as they involve making local decisions.

The Greedy Approach
- As in the case of dynamic programming algorithms, greedy algorithms are usually designed to solve optimization problems in which a quantity is to be minimized or maximized.
- Unlike dynamic programming algorithms, greedy algorithms typically consist of an iterative procedure that tries to find a local optimal solution.
- In some instances, these local optimal solutions translate to global optimal solutions. In others, they fail to give optimal solutions.

The Fractional Knapsack Problem
- Given \(n \) items of sizes \(s_1, s_2, \ldots, s_n \) and values \(v_1, v_2, \ldots, v_n \) and size \(C \), the knapsack capacity, the objective is to find nonnegative real numbers \(x_1, x_2, \ldots, x_n \) between 0 and 1 that maximize the sum

\[
\sum_{i=1}^{n} x_i v_i
\]

subject to the constraint

\[
\sum_{i=1}^{n} x_i s_i \leq C
\]

The Standard Knapsack Problem
- Given \(n \) items of sizes \(s_1, s_2, \ldots, s_n \) and values \(v_1, v_2, \ldots, v_n \) and size \(C \), the knapsack capacity, the objective is to find integers \(x_1, x_2, \ldots, x_n \) in \(\{0, 1\} \) that maximize the sum

\[
\sum_{i=1}^{n} x_i v_i
\]

subject to the constraint

\[
\sum_{i=1}^{n} x_i s_i \leq C
\]
The Standard Knapsack Problem

- Example:
- Optimal Solution: \(\{ 3, 4 \} \) has value 40.
- Greedy: repeatedly add item with maximum \(\frac{v_i}{w_i} \).
 - Greedy Solution:
 - \(\{ 5, 2, 1 \} \) achieves only value = 35 \(\Rightarrow \) greedy not optimal.

The Greedy Approach

- A greedy algorithm makes a correct guess on the basis of little calculation without worrying about the future. Thus, it builds a solution step by step. Each step increases the size of the partial solution and is based on local optimization.
- The choice made is that which produces the largest immediate gain while maintaining feasibility.
- Since each step consists of little work based on a small amount of information, the resulting algorithms are typically efficient.

The Shortest Path Problem

- Let \(G=(V, E) \) be a directed graph in which each edge has a nonnegative length, and a distinguished vertex \(s \) called the source. The single-source shortest path problem, or simply the shortest path problem, is to determine the distance from \(s \) to every other vertex in \(V \), where the distance from vertex \(s \) to vertex \(x \) is defined as the length of a shortest path from \(s \) to \(x \).
- For simplicity, we will assume that \(V=\{1, 2, \ldots, n\} \) and \(s=1 \).
- This problem can be solved using a greedy technique known as Dijkstra's algorithm.

The Greedy Approach

- The set of vertices is partitioned into two sets \(X \) and \(Y \) so that \(X \) is the set of vertices whose distance from the source has already been determined, while \(Y \) contains the rest vertices. Thus, initially \(X=\{1\} \) and \(Y=\{2, 3, \ldots, n\} \).
- Associated with each vertex \(y \) in \(Y \) is a label \(\ell[y] \), which is the length of a shortest path that passes only through vertices in \(X \). Thus, initially
 \[
 \ell[1]=0, \quad \ell[i] = \begin{cases}
 \text{length}(1, i) & \text{if } (1, i) \in E \\
 \infty & \text{if } (1, i) \notin E
 \end{cases}, \quad 2 \leq i \leq n
 \]

The Shortest Path Problem

- At each step, we select a vertex \(y \in Y \) with minimum \(\ell \) and move it to \(X \), and \(\ell \) of each vertex \(w \in Y \) that is adjacent to \(y \) is updated indicating that a shorter path to \(w \) via \(y \) has been discovered.
 \[
 \forall w \in Y \text{ and } (y, w) \in E, \quad \ell[w] = \min \{ \ell[w], \ell[y] + \text{length}(y, w) \}
 \]
- The above process is repeated until \(Y \) is empty.
- Finally, \(\ell \) of each vertex in \(X \) is the distance from the source vertex to this one.

The Shortest Path Problem

- Example:
The Shortest Path Problem

- **Input**: A weighted directed graph \(G=(V, E) \), where \(V=\{1, 2, \ldots, n\} \);
- **Output**: The distance from vertex 1 to every other vertex in \(G \);

1. \(X=\{1\}; \ Y=V-{1}; \ l[1]=0; \)
2. for \(y\) from 2 to \(n \)
 3. if \((y\) is adjacent to 1) \(\{ l[y]=\text{length}(1, y); p[y]=1 \} \)
 4. else \(l[y]=\infty; \)
5. for \(j\) from 2 to \(n \)
 6. let \(y\) in \(Y \) be such that \(l[y] \) is minimum;
 7. \(X=X\cup\{y\}; \ //\text{add vertex } y\) to \(X \)
 8. \(Y=Y-{y}; \ //\text{delete vertex } y \) from \(Y \)
 9. for each edge \((y, w) \)
 10. if \((w\) in \(Y \) and \(l[y]+\text{length}(y, w)<l[w] \))
 11. \(l[w]=l[y]+\text{length}(y, w); p[w]=y; \)

Dijkstra’s Shortest Path Algorithm

Find shortest path from \(s=1 \) to \(t=8 \).
Dijkstra's Shortest Path Algorithm

X = \{ s, 2 \}
Y = \{ 3, 4, 5, 6, 7, t \}

X = \{ s, 2 \}
Y = \{ 3, 4, 5, 6, 7, t \}

X = \{ s, 2, 6 \}
Y = \{ 3, 4, 5, 7, t \}

X = \{ s, 2, 6, 7 \}
Y = \{ 3, 4, 5, t \}

X = \{ s, 2, 3, 6, 7 \}
Y = \{ 4, 5, t \}
Dijkstra's Shortest Path Algorithm

\[X = \{ s, 2, 3, 5, 6, 7 \} \]
\[Y = \{ 4, t \} \]
Dijkstra's Shortest Path Algorithm

\[X = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
\[Y = \{ \} \]

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node \(u \in X \), \(\lambda(u) \) is the length of the shortest \(s-u \) path.

Pf. (by induction on \(|X|\))

Base case: \(|X| = 1\) is trivial.

Inductive hypothesis: Assume true for \(|X| = k \geq 1\).

Inductive case:
1. Let \(v \) be next node added to \(X \), and let \(u-v \) be the chosen edge.
2. The shortest \(s-u \) path plus \((u, v) \) is an \(s-v \) path of length \(\lambda(v) \).
3. Consider any \(s-v \) path \(P \). We'll see that it's no shorter than \(\lambda(v) \).
4. Let \(x-y \) be the first edge in \(P \) that leaves \(X \), and let \(P' \) be the subpath to \(x \).
5. \(P \) is already too long as soon as \(P \) leaves \(X \).
6. \((P) = (P') + (x,y) = \lambda(x) + (x,y) + \lambda(y) \geq \lambda(v) \)
7. So \(s-u-v \) is the shortest path among all the \(s-v \) paths.

Dijkstra's Algorithm: Implementation

For each unexplored node in \(Y \), explicitly maintain \(\lambda(v) \).
1. Next node to explore = node with minimum \(\lambda(v) \).
2. When exploring \(v \), for each incident edge \(e = (v, w) \), update \(\lambda(w) \).

Efficient implementation. Maintain a priority queue of unexplored nodes \(Y \), prioritized by \(\lambda(v) \).

Minimum Cost Spanning Trees

- Let \(G=(V, E) \) be a connected undirected graph with weights on its edges.
- A spanning tree \((V, T) \) of \(G \) is a subgraph of \(G \) that is a tree containing all the vertices.
- If \(G \) is weighted and the sum of the weights of the edges in \(T \) is minimum, then \((V, T) \) is called a minimum cost spanning tree or simply a minimum spanning tree.

Algorithm Characteristics

- Both Prim's and Kruskal's Algorithms work with undirected graphs
- Both work with weighted and unweighted graphs but are more interesting when edges are weighted
- Both are greedy algorithms that produce optimal solutions

Prim's Algorithm

- Similar to Dijkstra's Algorithm except \(\lambda(v) \) records edge weights, not path lengths
Prim's Algorithm

- **Input:** A weighted undirected graph \(G = (V, E) \), \(V = \{1, 2, ..., n\} \);
- **Output:** The MST recorded in \(p[v] \);

1. \(X = \{1\}; Y \leftarrow V - \{1\} \);
2. for \(y \leftarrow 2 \) to \(n \)
 3. if \(y \) is adjacent to \(1 \) { \(\ell[y] \leftarrow \text{length}(1, y); p[y] \leftarrow 1 \) }
 4. else \(\ell[y] \leftarrow \infty \);
5. for \(j \leftarrow 2 \) to \(n \)
 6. Let \(y \in Y \) be such that \(\ell[y] \) is minimum;
 7. \(X \leftarrow X \cup \{y\} \); //add vertex \(y \) to \(X \)
 8. \(Y \leftarrow Y - \{y\} \); //delete vertex \(y \) from \(Y \)
 9. for each edge \((y, w)\)
 10. if \(w \in Y \) and \(\ell[y] + \text{length}(y, w) < \ell[w] \)
 11. \(\ell[w] \leftarrow \ell[y] + \text{length}(y, w); p[w] \leftarrow y \); }

An Example

Start with any node, say \(D \)
Update distances of adjacent, unselected nodes

<table>
<thead>
<tr>
<th>Node</th>
<th>d_A</th>
<th>d_B</th>
<th>d_C</th>
<th>d_D</th>
<th>d_E</th>
<th>d_F</th>
<th>d_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>18</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>18</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>18</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

Select node with minimum distance

<table>
<thead>
<tr>
<th>Node</th>
<th>d_A</th>
<th>d_B</th>
<th>d_C</th>
<th>d_D</th>
<th>d_E</th>
<th>d_F</th>
<th>d_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>18</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>18</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>18</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

Table entries unchanged
Update distances of adjacent, unselected nodes

Select node with minimum distance

Select node with minimum distance

Table entries unchanged

Cost of Minimum Spanning Tree = ∑ w_e = 21

Minimum Cost Spanning Trees (Kruskal’s Algorithm)

- Kruskal’s algorithm works by maintaining a forest consisting of several spanning trees that are gradually merged until finally the forest consists of exactly one tree.

- The algorithm starts by sorting the edges in nondecreasing order by weight.
Minimum Cost Spanning Trees (Kruskal’s Algorithm)

- Next, starting from the forest \((V, T)\) consisting of the vertices of the graph and none of its edges, the following step is repeated until \((V, T)\) is transformed into a tree: Let \((V, T)\) be the forest constructed so far, and let \(e \in E - T\) be the current edge being considered. If adding \(e\) to \(T\) does not create a cycle, then include \(e\) in \(T\); otherwise discard \(e\).
- This process will terminate after adding exactly \(n-1\) edges.

Kruskal’s Algorithm

Work with edges, rather than nodes
Two steps:
- Sort edges by increasing edge weight
- Select the first \(|V| - 1\) edges that do not generate a cycle

Walk-Through

Consider an undirected, weight graph

Sort the edges by increasing edge weight

Select first \(|V| - 1\) edges which do not generate a cycle

Select first \(|V| - 1\) edges which do not generate a cycle
Select first $|V|-1$ edges which do not generate a cycle

Accepting edge (E,G) would create a cycle
File Compression

- Suppose we are given a file, which is a string of characters. We wish to compress the file as much as possible in such a way that the original file can easily be reconstructed.

Motivation

The motivations for data compression are obvious:

- reducing the space required to store files on disk or tape
- reducing the time to transmit large files.

Huffman savings are between 20% - 90%
Basic Idea:
Let the set of characters in the file be $C = \{c_1, c_2, \ldots, c_n\}$. Let also $f(c_i)$, $1 \leq i \leq n$, be the frequency of character c_i in the file, i.e., the number of times c_i appears in the file.

It uses a variable-length code table for encoding a source symbol (such as a character in a file) where the variable-length code table has been derived in a particular way based on the frequency of occurrence for each possible value of the source symbol.

Example:
Suppose you have a file with 100K characters.
For simplicity assume that there are only 6 distinct characters in the file from a through f, with frequencies as indicated below.

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency (in 100s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>45</td>
</tr>
<tr>
<td>b</td>
<td>13</td>
</tr>
<tr>
<td>c</td>
<td>12</td>
</tr>
<tr>
<td>d</td>
<td>16</td>
</tr>
<tr>
<td>e</td>
<td>9</td>
</tr>
<tr>
<td>f</td>
<td>5</td>
</tr>
</tbody>
</table>

We represent the file using a unique binary string for each character.

<table>
<thead>
<tr>
<th>Character</th>
<th>Fixed-length codeword</th>
<th>Variable-length codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>001</td>
<td>101</td>
</tr>
<tr>
<td>c</td>
<td>010</td>
<td>100</td>
</tr>
<tr>
<td>d</td>
<td>011</td>
<td>111</td>
</tr>
<tr>
<td>e</td>
<td>100</td>
<td>1100</td>
</tr>
<tr>
<td>f</td>
<td>101</td>
<td>1101</td>
</tr>
</tbody>
</table>

Space = $(45 \times 3 + 13 \times 3 + 12 \times 3 + 16 \times 3 + 9 \times 4 + 5 \times 4) \times 1000 = 300K$ bits

Can we do better??
YES!!

By using variable-length codes instead of fixed-length codes.

Idea: Giving frequent characters short codewords, and infrequent characters long codewords.

i.e. The length of the encoded character is inversely proportional to that character’s frequency.

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency (in 1000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>45</td>
</tr>
<tr>
<td>b</td>
<td>13</td>
</tr>
<tr>
<td>c</td>
<td>12</td>
</tr>
<tr>
<td>d</td>
<td>16</td>
</tr>
<tr>
<td>e</td>
<td>9</td>
</tr>
<tr>
<td>f</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Character</th>
<th>Fixed-length codeword</th>
<th>Variable-length codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>001</td>
<td>101</td>
</tr>
<tr>
<td>c</td>
<td>010</td>
<td>100</td>
</tr>
<tr>
<td>d</td>
<td>011</td>
<td>111</td>
</tr>
<tr>
<td>e</td>
<td>100</td>
<td>1100</td>
</tr>
<tr>
<td>f</td>
<td>101</td>
<td>1101</td>
</tr>
</tbody>
</table>

Space = $(45 \times 1 + 13 \times 3 + 12 \times 3 + 16 \times 3 + 9 \times 4 + 5 \times 4) \times 1000 = 224K$ bits (Savings = 25%)

Benefits of using Prefix Codes:

Example:

<table>
<thead>
<tr>
<th>Character</th>
<th>Variable-length codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>101</td>
</tr>
<tr>
<td>c</td>
<td>100</td>
</tr>
<tr>
<td>d</td>
<td>111</td>
</tr>
<tr>
<td>e</td>
<td>1101</td>
</tr>
<tr>
<td>f</td>
<td>1100</td>
</tr>
</tbody>
</table>

To decode, we have to decide where each code begins and ends, since they are no longer all the same length. But this is easy, since, no codes share a prefix.

To see why the no-common prefix property is essential, suppose that we encoded "e" with the shorter code "110".

<table>
<thead>
<tr>
<th>Character</th>
<th>Variable-length codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>101</td>
</tr>
<tr>
<td>c</td>
<td>100</td>
</tr>
<tr>
<td>d</td>
<td>111</td>
</tr>
<tr>
<td>e</td>
<td>1100</td>
</tr>
</tbody>
</table>

When we try to decode "1100", we could not tell whether

$1100 = 110 + 0 = "f"$

or

$1100 = 110 + 0 = "a"$

So we can print "f" and start decoding "0100...", get 'a', etc.
Representation:

The Huffman algorithm is represented as:

- binary tree
- each edge represents either 0 or 1
 - 0 means “go to the left child”
 - 1 means “go to the right child.”
- each leaf corresponds to the sequence of 0s and 1s traversed from the root to reach it, i.e. a particular code.

Since no prefix is shared, all legal codes are at the leaves, and decoding a string means following edges, according to the sequence of 0s and 1s in the string, until a leaf is reached.

Optimal Code

An optimal code for a file is always represented by a full binary tree, in which every non-leaf node has two children.

The fixed-length code in our example is not optimal since its tree, is not a full binary tree: there are codewords beginning 10 . . . , but none beginning 11 ..

Given a tree T corresponding to a prefix code, it is a simple matter to compute the number of bits required to encode a file.

For each character c in the alphabet C,

- $f(c)$ denote the frequency of c in the file
- $d(c)$ denote the depth of c’s leaf in the tree.

The number of bits required to encode a file is thus

$$ R(T) = \sum_{c \in C} f(c) \cdot d(c) $$

which we define as the cost of the tree.

Constructing a Huffman code

Huffman invented a greedy algorithm that constructs an optimal prefix code called a Huffman code. The algorithm builds the tree T corresponding to the optimal code in a bottom-up manner.

It begins with a set of $|C|$ leaves and performs a sequence of $|C| - 1$ “merging” operations to create the final tree.

Greedy Choice?

The two smallest nodes are chosen at each step, and this local decision results in a globally optimal encoding tree.

In general, greedy algorithms use local minimal/maximal choices to result in a global minimum/maximum.
Correctness of Huffman’s algorithm

To prove that the greedy algorithm Huffman is correct, we show that the problem of determining an optimal prefix code exhibits the greedy-choice and optimal-substructure properties.

Running Time Analysis

Assumes that Q is implemented as a binary min-heap.

- For a set C of n characters, the initialization of Q in line 2 can be performed in $O(n)$ time using the BUILD-MIN-HEAP procedure.
- The for loop in lines 3-8 is executed exactly $n-1$ times. Each heap operation requires time $O(\log n)$. The loop contributes $\sum_{i=1}^{n-1} O(\log n) = O(n\log n)$

Thus, the total running time of Huffman on a set of n characters = $O(n) + O(n\log n) = O(n \log n)$

The Greedy-Choice Property

Lemma:
Let C be an alphabet in which each character c in C has frequency $f(c)$. Let x and y be two characters in C having the lowest frequencies. Then there exists an optimal prefix code for C in which the code words for x and y have the same length and differ only in the last bit.

Proof:
The idea of the proof is to take the tree T representing an arbitrary optimal prefix code and modify it to make a tree representing another optimal prefix code such that the characters x and y appear as sibling leaves of maximum depth in the new tree. If we can do this, then their code words will have the same length and differ only in the last bit.

Similarly exchanging the positions of b and y in T', to produce T'' does not increase the cost,

$B(T') - B(T'') = 0$.

Since T is optimal, so is T' and T''.

Thus, T'' is an optimal tree in which x and y appear as sibling leaves of maximum depth from which the lemma follows.
Lemma that shows that the optimal substructure property holds.

Lemma:
Let C be a given alphabet with frequency $f[c]$ defined for each character $c \in C$. Let x and y be two characters in C with minimum frequency. Let C' be the alphabet C with characters x, y removed and (new) character z added, so that $C' = C - \{x, y\} \cup \{z\}$; define f for C' as for C, except that $f[z] = f[x] + f[y]$. Let T' be any tree representing an optimal prefix code for the alphabet C'. Then the tree T, obtained from T' by replacing the leaf node for z with an internal node having x and y as children, represents an optimal prefix code for the alphabet C.

Proof:
We first express $B(T)$ in terms of $B(T')$:
\[
\forall c \in C - \{x, y\} \text{ we have } d_T(c) = d_{T'}(c), \text{ and hence } f(c)d_T(c) = f(c)d_{T'}(c).
\]
Since $d_T(x) = d_T(y) = d_T(z) + 1$, we have
\[
f(x)d_T(x) + f(y)d_T(y) = (f(x) + f(y)) (d_T(z) + 1) = f(z)d_T'(z) + (f(x) + f(y)) \]
From which we conclude that
\[
B(T) = B(T') + (f(x) + f(y))
\]
Proof by contradiction
Suppose that T does not represent an optimal prefix code for C. Then there exists a tree T'' such that $B(T'') < B(T)$.
Without loss in generality (by the previous lemma) T'' has x & y as siblings. Let T''' be the tree T'' with the common parent of x & y replaced by a leaf z with frequency $f[z] = f[x] + f[y]$.
Then, $B(T''') = B(T'') - (f[x] - f[y]) < B(T) - (f[x] - f[y]) = B(T')$
Yielding a contradiction to the assumption that T' represents an optimal prefix code for C. Thus, T must represent an optimal prefix code for the alphabet C.

Drawbacks
The main disadvantage of Huffman’s method is that it makes two passes over the data:
- one pass to collect frequency counts of the letters in the message, followed by the construction of a Huffman tree and transmission of the tree to the receiver; and
- a second pass to encode and transmit the letters themselves, based on the static tree structure.

This causes delay when used for network communication, and in file compression applications the extra disk accesses can slow down the algorithm.

We need one-pass methods, in which letters are encoded “on the fly”.

File Compression
- **An Example:**
 \[
 C = \{a, b, c, d, e\}
 \]
 \[
 f(a) = 20 \\
 f(b) = 7 \\
 f(c) = 10 \\
 f(d) = 4 \\
 f(e) = 18
 \]