Write a backtracking algorithm to solve:

Given n positive integers $\mathbf{x} = x_1, x_2, \ldots, x_n \in \mathbb{Z}$ and $y \in \mathbb{Z}^+$ does there exist $\mathbf{y} \in \mathbf{x}$: $\sum y_i = y$ for $y_i \in \mathbf{x}$.

Create a binary tree where each level i, refers to the weight w_i.

Each node has two branches one 0 one 1. 0 means total the weight represented by the child is not included in the solution, 1 means it is.

Traverse the tree in a depth-first manner, back up and by next branch when clear that weights exceed y.

Test: let S be the accumulated sum at level i.

Since weights are in ascending order, if $S + w_i > y$ then no solution on branch.

$w = (w_1, w_2, \ldots, w_n)$ the weight vector. $w_i < w_i+1$

$y = (y_1, y_2, \ldots, y_n)$ is the solution vector, initialize to $\mathbf{0}$.

$y \in \mathbb{Z}_+^n$. $y \leq \mathbf{x} w_i$

$s = w_1 y_1 + w_2 y_2 + \ldots + w_n y_n$ $k \leq n$

Backtrack will mean to decrement k until $y_k = 1$. Then set $y_k = 0$. If $k = 0$ then finished.

Subset Sum (w, y)

$y = \mathbf{0}$, $s = 0$, $k = 0$ $n = \text{length}(w)$.

Boolean done = false

while (!done)

$k = k+1$

if ($k > n$)

Call Back track

else
\[y_k = 1 \]
\[S = 0 \]
for \(i = 1 \) to \(k \)
\[S = S + y_i \cdot x_i \quad // \text{current value of } S \]
if \((S = y) \)
return \(1 \) \quad // \text{done}
if \((S > y) \)
\[\text{call Back track} \]
Back track()
if \((k \leq n) \)
\[y_k = 0 \]
\[k = k - 1 \]
if \((y_k = 1) \)
\[y_k = 0 \]
else
\[\text{while } (k > 0 \land y_k = 0) \]
\[k = k - 1 \]
if \((k > 0) \)
\[y_k = 0 \]
else
done = true.
13/14. a) Give a backtracking algorithm to solve the knapsack problem.

b) Which technique (dynamic / backtracking) is more efficient?

// Suppose we have n items with sizes given by weights w1...wN and
// values given by profit p1...pN. Let y be the capacity of the sack.
// Let: \(\sum w_i < y \) \(\sum p_i y_i \) maximized
// \(y = (y_i) \) is a binary vector.
// use an upper bound on the value of best feasible solution to
// expanding a given node and its descendants. If the upper bound
// is not larger than the value of best solution so far,
discard node.
// \text{upper}(p,w,k,y) \text{ determines an upper bound on the}
// \text{best solution obtainable by expanding any node } y \text{ at level } k+1.
// \text{upper}(p,w,k,y) = \text{upper}(p,w,k+1) \text{ if } \frac{p_i}{w_i} \geq \frac{p_{i+1}}{w_{i+1}} \text{, } 1 \leq i < n

\text{Bound}(p,w,k,y) \text{ is}
\begin{align*}
p &= \text{current profit total} \\
w &= \text{current weight total} \\
k &= \text{index of last removed item}
\end{align*}

b = p \quad c = w \\
\text{for } i = k+1 \text{ to } n \\
c = c + w_i \\
P(c,y) \\
b = b + p_i \\
\text{else} \\
\text{return } \left[\frac{b + (1 - (c - y)) \times P(i)}{w_i} \right] \quad \text{ //new profit}
\text{return } b \\
\text{The bound for a feasible left child } y(B) = 1 \text{ for a node } y \text{ is the same as for } y = \text{Bound}(.) \text{ does not need to}
KnapSack (y, n, W, P, realweight, realprofit, s) S

\[\text{cw} = \text{cp} = 0 \quad \text{//current weight / profit} . \]
\[k = 1 \]
\[\text{finalprofit} = 1 \]

\[\text{while } (k < n \text{ and } \text{cw + W(k) < y}) \]
\[\text{//place k into knapsack} \]
\[\text{cw} = \text{cw} + W(k) \]
\[\text{cp} = \text{cp} + P(k) \]
\[\text{z}(k) = 1 \]
\[k = k + 1 \]

\[\text{if } (k = n) \]
\[\text{finalprofit} = \text{cp} \]
\[\text{finalweight} = \text{cw} \]
\[k = n \]
\[z = z \]

\[\text{else} \]
\[z(k) = 0 \quad \text{//y so object k not in sack} \]

\[\text{while (Bound(cp, cw, k, y) < finalprofit)} \]
\[\text{while } (k > 0, z(k) = 1) \]
\[k = k - 1 \quad \text{//find last included weight} \]
\[\text{if } k = 0 \]
\[\text{return} \]
\[z(k) = 0 \]
\[\text{cw} = \text{cw} - W(k) \quad \text{//remove kth item} \]
\[\text{cp} = \text{cp} - P(k) \]
\[k = k + 1 \]

this algorithm generates a \(2^n \) binary tree in reversed lexicographic order. it takes \(O(n) \) to check

bounding function at \(O(2^n) \) right children \(\Rightarrow \) time complexity \(O(2^n) \)

for large \(n \), the dynamic approach is better.
Give backtracking algorithm to solve the assignment problem defined as follows. Given \(n \) employees to be assigned to \(n \) jobs such that the cost of assigning the \(i \)th person to the \(j \)th job is \(c_{ij} \), find an assignment that minimizes total cost. Assume that the cost is non-negative \(c_{ij} \geq 0 \) for \(1 \leq i, j \leq n \).

Variables:
- \(E = \{e_1, e_2, \ldots, e_n\} \) Employees
- \(J = \{j_1, j_2, \ldots, j_n\} \) Jobs
- \(C = \{c_{11}, c_{12}, \ldots, c_{1n}\}
- \{c_{21}, c_{22}, \ldots, c_{2n}\}
- \{c_{n1}, c_{n2}, \ldots, c_{nn}\} \)

Constraints:
- All costs \(c_{ij} \geq 0 \)
- Cost is minimized
- Employee to job is 1 to 1 relationship.

Assignment Problem (cost matrix: \(C \))

```
// Get min matrix
// min rows
for i = 1 to n
  for j = 1 to n
    rowmin = Min(c_{ij})  // Subtract min value from each entry in i
    c_{ij} -= rowmin
    bound += rowmin
  end
end

// min Col
for i = 1 to n
  for j = 1 to n
    colmin = Min(c_{ij})  // Col min value
    c_{ij} -= colmin
    bound += colmin
  end
end

n x n matrix d  // decision matrix
```
Problem 13.17 cost

\[\text{Colspace} \{1...n\} \]
\[\text{Rowspace} \{1...n\} \]
\[\text{Assignment} \ (C, \text{rowspace}, \text{colspace}) \]

Assignment (Matrix M, int R, int C, int index)
\[\text{col} = \text{FindZero}(R, \text{index}) \] // Find zero in row index, return col index

\[\text{d} = \text{CalculateBand}(M, C, \text{index}, \text{col}) \]
\[\text{Takeband} = \text{CalculateBand2}(M, \text{index}, \text{col}) \]

\[\text{If} \ (\text{takeband} < \text{d} + \text{don'tTakeband}) \]
\[\text{Remove index from R} \]
\[\text{Remove col from C} \]
\[\text{Assignmen}t \ (M, R, C, 1) \]

\[\text{Else} \]
\[C, \text{index}, \text{col} = \infty \]
\[\text{Update matrix M} \]
\[\text{Does the row/col reduction adds to bound total.} \]
\[\text{Assignmen}t \ (M, R, C, 1) \]
\[\text{d} = \text{index}, \text{col} = 0; \]
\[\text{bound: don'tTakeband} \]

\[\text{Explanation} \]

1. Find least cost reduction matrix such that every row has a zero, calculate lower bound.
2. Choose the zero in col; find row; analyze lower bound; if C{i} was removed, set to infinity, choose better result, store in decision
3. Repeat step 2 until out of entries
4. Return bound as min cost to have a decision matrix which corresponds to the cost matrix.
A 1 denotes that job i is done by person j in jth row.
Problem 13.19

Apply the branch-and-bound algorithm for the traveling salesman problem discussed in 13.5 on instance...

\[
\begin{bmatrix}
\infty & 3 & 0 & 8 \\
0 & \infty & 5 & 10 \\
6 & 0 & 2 & \infty \\
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
3 & 0 & \infty & 8 \\
0 & 4 & \infty & 2 \\
0 & 0 & \infty & 2 \\
\end{bmatrix}
\]

Reduction matrix lower bound = 11

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
\end{bmatrix}
\]

Band = 11

Solution Edges

2 to 1
1 to 3
3 to 4
4 to 2

Cost = 11
Problem 13.20

Consider the knapsack problem (see 7.6). Use branch & bound and a suitable lower bound to solve the instance of this problem in Ex. 7.6.

Capacity: 9

<table>
<thead>
<tr>
<th>Item</th>
<th>Size</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Find Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Item</th>
<th>Value/Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>1.3</td>
<td>2</td>
<td>1.3</td>
</tr>
<tr>
<td>1.25</td>
<td>3</td>
<td>1.25</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Sort them high/low:

1. 4: 1.5
2. 2: 1.3
3. 3: 1.25

2 Solutions

Items 1, 2, 3 or Items 4, 3, both have size 9.

Items 1, 2, 3

- Total Value = 0
- Size = 6
- Bound = 12.67

Don't take Item 1.

Items 2, 3

- Size = 7
- Bound = 12.67

Take Item 2.

Items 3

- Done

Value = 10

Items 4, 3

- Value = 0
- Size = 0
- Bound = 9

Don't take Item 4.

Items 4

- Size = 5
- Bound = 12

Take Item 4.

Value = 7

- Size = 2
- Bound = 9

Don't take Item 2.

Value = 10

- Size = 5
- Bound = 12

Take Item 2.

Value = 7

- Size = 2
- Bound = 8

Don't take Item 3.

Value = 12

- Size = 9
- Bound = 12

Don't take Item 3.

Value = 12

- Size = 5
- Bound = 7

Take Item 3.

Value = 7

- Size = 5
- Bound = 7

Take Item 3.

* Done Value = 12 + 7 = 19
Problem 13.21

Carry out a branch-and-bound procedure to solve the following instance of the assignment problem (Exercise 13.17). There are 4 employees, 4 jobs. The cost function is represented by the matrix below. Row i corresponds to the i-th employee, column j corresponds to the j-th job.

\[
\begin{bmatrix}
3 & 5 & 2 & 4 \\
6 & 7 & 5 & 3 \\
3 & 7 & 4 & 5 \\
8 & 5 & 4 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 3 & 0 & 2 \\
3 & 4 & 2 & 0 \\
0 & 4 & 1 & 2 \\
4 & 1 & 0 & 2
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 0 & 2 \\
3 & 3 & 2 & 0 \\
0 & 3 & 1 & 2 \\
4 & 0 & 0 & 2
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 0 \\
3 & 3 & 2 & 2 \\
4 & 0 & 2 & 2
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 0 \\
3 & 3 & 2 & 2 \\
4 & 0 & 2 & 2
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 0 \\
3 & 3 & 2 & 2 \\
4 & 0 & 2 & 2
\end{bmatrix}
\]

Total cost = 13

<table>
<thead>
<tr>
<th>Employee</th>
<th>Job</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>