Money Change Problem (Example 1.24)

Currency System with following coins:
- Dollars, Quarters, Dimes, Nickels, Pennies

Want to give change of "n" value in cents such that total number of
coins is minimized. Give greedy algorithm to solve problem.

```
1. Defn: Change(n) ==
2.  "int quarters = 0;
3.  "int dimes = 0;
4.  "int nickels = 0;
5.  "int pennies = 0;
6.  "while (n >= 25)
7.      "quarters++;
8.      "n -= 25;
9.  "while (n >= 10)
10.     "dimes++;
11.     "n -= 10;
12.  "while (n >= 5)
13.     "nickels++;
14.     "n -= 5;
15.  "while (n >= 1)
16.     "pennies++;
17.     "n -= 1;
18. "return quarters + dimes + nickels + pennies;
```

Example:
- Change(97)
- 0 quarters
- 1 dime
- 1 nickel
- 2 pennies
- Total: 3 coins
Problem 8.4

Give a counterexample to show greedy algorithm from 8.3 is not always correct if coins are 1, 5, 7, 11 cents.

Using Greedy Example, \(n = 14 \)
\[
\begin{align*}
\text{n} &= 14 \geq 11 \checkmark \quad \text{Coin Count} = 1 \\
\text{n} &= 14 - 11 = 3 \\
\text{n} &= 3 \geq 7 \times \\
\text{n} &= 3 \geq 5 \times \\
\text{n} &= 3 \geq 1 \checkmark \quad \text{Coin Count} = 2 \\
\text{3-1 = 2} \\
\text{n} &= 2 \geq 1 \checkmark \quad \text{Coin Count} = 3 \\
\text{2-1 = 1} \\
\text{n} &= 12 \checkmark \quad \text{Coin Count} = 4 \\
\text{n} &= 0 \quad \text{Done} \quad \underline{4 \text{ Coins}}
\end{align*}
\]

Optimal
\[
7 + 7 = 14 \checkmark \quad \underline{2 \text{ Coins}}
\]

When \(n = 14 \ldots \)

Greedy = 4 coins
Optimal = 2 coins
Problem 8.8

Let \(G = (V, E) \) be an undirected graph. A clique \(C \) in \(G \) is a subgraph in \(G \) that is a complete graph by itself. A clique \(C \) is maximum if there is no other clique \(C' \) in \(G \) such that the size of \(C' \) is greater than the size of \(C \). Consider the following method to find max clique in \(G \).

Let \(C = G \). Repeat following until \(C \) is a clique. Delete from \(C \) a vertex that is not connected to every other vertex in \(C \).

Show that this greedy approach does not always result in max clique.

Show by example:

Following algorithm:

1. 4 not connected to 2 \(\rightarrow \) remove 4
2. 2 not connected to 5 \(\rightarrow \) remove 2
3. 5 not connected to 3 \(\rightarrow \) remove 5

Clique (All connected) size = 3

Best Result:

Clique (All connected) size = 4

Greedy is not always max clique
8.10) Give a greedy algorithm for the order in which these arrays should be merged so that the overall # of comparisons is minimized.

Consider the sizes n_i's corresponding to the arrays A_j's.

1. Sort n_1, n_2, \ldots, n_j in non-decreasing order.

2. Sort the first two arrays that correspond to the smallest two sizes, say n_i, n_j (A_i, A_j) as A_i.

3. Find the position of the size n_i of A_i in the sorted list of sizes.

4. Repeat steps (2-3) until sorted.

Note that in the Huffman Algorithm, the "set of characters" is the set of arrays and the "frequencies" are the respective sizes.

// Insert the arrays into a min heap H according to their sizes.
// Huffman tree (T, T) for $\{n\}$ set of arrays

$V \leftarrow \{d\}; T = \emptyset$

For $j = 1$ to $n-1$

- $a \leftarrow \text{DeleteMin}(H)$
- $a' \leftarrow \text{DeleteMin}(H)$
- $\text{size}(v) = \text{size}(a) + \text{size}(a')$ // v is a new node
 - Insert (H, v)
- $V = V \cup \{v\}$ // add v to V
- $T = T \cup S(v, a), (v, a')$ // make the arrays a & a' children of v in T
8.10. Analyze the time complexity of the algorithm in (8.10).

Repealing the merge of two arrays induces a binary tree in which each node is a merge. The contribution of any leaf of the tree, to the total cost of the final merge is the weight of that leaf times its depth. (bc each node is a merge, and the values in the leaf take part of the merges in the path from the leaf to the root.)

This is similar to the total lengths of a Huffman encoding: the sum of the products of the frequency of a symbol with the depth of the leaf corresponding to that symbol.

The time complexity is: $O(n \log m)$ where m is the # of arrays to be merged.
Apply Dijkstra on the following graph. Assume that vertex 1 is the start vertex.

\[X = 8, 1, 3, 2, 5, 4, 8 \]

\[X = 8, 1, 3, 2, 5, 8 \]

\[X = 8, 1, 3, 2, 5, 8 \]

\[X = 8, 1, 3, 2, 5, 8 \]
Problem 8.23
Show the result of applying Kruskal's algorithm to find minimum cost spanning tree for undirected graph.

Go until added n-1 edges.
\(n = 6 \): 5 edges

<table>
<thead>
<tr>
<th>Edge</th>
<th>Distance</th>
<th>Taken?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>(1,4)</td>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>(2,4)</td>
<td>2</td>
<td>✓</td>
</tr>
<tr>
<td>(3,6)</td>
<td>3</td>
<td>✓</td>
</tr>
<tr>
<td>(5,6)</td>
<td>3</td>
<td>x</td>
</tr>
<tr>
<td>(3,5)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(4,6)</td>
<td>6</td>
<td>✓</td>
</tr>
<tr>
<td>(4,3)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>(4,5)</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Result

Cost: 15
Problem 8.24:

Show result of applying Prim algorithm to find min cost spanning tree for undirected graph.

Start vertex 1

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Choose 2

Choose 4 (Defaut form 1)

Choose 5

Done

Choose 3 (Default choice) from 1

Choose 6

Final Result

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Cost = 15
8:30) G directed weighted graph G:
No two edges have the same weight.
Let T be the shortest path tree.
Let G' be the undirected graph obtained from G. Let T' be the minimum spanning tree.
Prove or disprove $T = T'$.

- Consider the following graph G:

- Finding the shortest path tree with vertex 0 as source gives:

- But the minimum spanning tree is:

\[X = 30, 13 \]

\[X = 30, 1, 2, 8 \]

\[\therefore T \neq T' \]
Problem 8.31

Use Huffman algorithm to find an optimal code for characters a, b, c, d, e, f whose freq are 7, 5, 3, 2, 12, 9.

Merge a:7/c:3

Merge a:7/b:5

Merge a:7/f:9

Merge a:7/b:5

Merge a:7/16

Merge a:7/e:12

Merge a:7/f:9

Code:

- a: 00
- b: 101
- c: 1001
- d: 11
- e: 01
- f: 0