3.7)
while(S1 is not empty)
{
 // remove top element from S1
 checked_value = S1.pop();

 // store checked val into s2 in sorted stack
 while((S2.empty() != ! and (S2.peek() < checked_value))
 {
 // elements from s2 is popped, value smaller than checked value is pushed to s1
 S1.push(S2.pop());
 }

 // if while condition not true, then checked val is pushed to s2
 S2.push(x);
}
Time complexity will be O(n^2)

3.9)

Adjacency matrix takes up n^2 spaces and each entry takes up 1 bit (0 or 1)

adjacency list takes up |E| spaces and each entry takes up (how many bits? let's call this amount x)
so, it's more efficient use the adjacency matrix when n^2 bits< |E|*x bits is true.

3.10)

Sufficient Condition

Let G=(V,E) be bipartite.
So, let V=A∪B such that A∩B=∅ and that all edges e∈E are such that e is of the form (a,b) where a∈A and b∈B.
(This is the definition of a bipartite graph.)
Suppose G has (at least) one odd cycle C.
Let the length of C be n.
Let C=(v1,v2,...,vn,v1).

WLOG, let v1∈A. It follows that v2∈B and hence v3∈A, and so on.

Hence we see that ∀k∈{1,2,...,n}, we have:
vk∈{A:B:k oddk even}
But as \(n \) is odd, \(v_n \in A \).

But \(v_1 \in A \), and \(v_nv_1 \in C_n \).
So \(v_nv_1 \in E \) which contradicts the assumption that \(G \) is bipartite.
Hence if \(G \) is bipartite, it has no odd cycles.

Necessary Condition

It is enough to consider \(G \) as being connected, as otherwise we could consider each component separately.
Suppose \(G \) has no odd cycles.
Choose any vertex \(v \in G \).
Divide \(G \) into two sets of vertices like this:
Let \(A \) be the set of vertices such that the shortest path from each element of \(A \) to \(v \) is of odd length;
Let \(B \) be the set of vertices such that the shortest path from each element of \(B \) to \(v \) is of even length.
Then \(v \in B \) and \(A \cap B = \emptyset \).
Suppose \(a_1, a_2 \in A \) are adjacent.
Then there would be a closed walk of odd length \((v, \ldots, a_1, a_2, \ldots, v) \).
But from Graph containing Closed Walk of Odd Length also contains Odd Cycle, it follows that \(G \) would then contain an odd cycle.
This contradicts our initial supposition that \(G \) contains no odd cycles.
So no two vertices in \(A \) can be adjacent.
By the same argument, neither can any two vertices in \(B \) be adjacent.
Thus \(A \) and \(B \) satisfy the conditions for \(G = (A \cup B, E) \) to be bipartite.

3.20)

A binary search tree is a binary tree with a special property called the BST-property, which is given as follows:

For all nodes \(x \) and \(y \), if \(y \) belongs to the left subtree of \(x \), then the key at \(y \) is less than the key at \(x \), and if \(y \) belongs to the right subtree of \(x \), then the key at \(y \) is greater than the key at \(x \).
We will assume that the keys of a BST are pairwise distinct.

Each node has the following attributes:

- \(p \), left, and right, which are pointers to the parent, the left child, and the right child, respectively, and
- key, which is key stored at the node.

DELETE

Suppose we want to delete a node \(z \).
1. If \(z \) has no children, then we will just replace \(z \) by nil.
2. If \(z \) has only one child, then we will promote the unique child to \(z \)'s place.
3. If \(z \) has two children, then we will identify \(z \)'s successor. Call it \(y \). The successor \(y \) either is a leaf or has only the right child. Promote \(y \) to \(z \)'s place. Treat the loss of \(y \) using one of the above two solutions.
ALGORITHM

This algorithm deletes z from BST T. BST-Delete(T, z)
1: if left[z] = nil or right[z] = nil
2: then y ← z
3: else y ← BST-Successor(z)
4: y is the node that’s actually removed.
5: Here y does not have two children.
6: if left[y] 6= nil
7: then x ← left[y]
8: else x ← right[y]
9: x is the node that’s moving to y’s position.
10: if x 6= nil then p[x] ← p[y]
11: p[x] is reset if x isn’t NIL.
12: Resetting is unnecessary if x is NIL.
13: if p[y] = nil then root[T] ← x
14: If y is the root, then x becomes the root.
15: Otherwise, do the following.
16: else if y = left[p[y]]
17: then left[p[y]] ← x
18: If y is the left child of its parent, then
19: Set the parent’s left child to x.
20: else right[p[y]] ← x
21: If y is the right child of its parent, then
22: Set the parent’s right child to x.
23: if y 6= z then
24: { key[z] ← key[y]
25: Move other data from y to z } 27: return (y)

Time Complexity:

The worst case time complexity of delete operation is O(h) where h is height of Binary Search Tree. In worst case, we may have to travel from root to the deepest leaf node. The height of a skewed tree may become n and the time complexity of delete operation may become O(n)

(2p) Let R be the relation represented by the digraph in Fig 3.2 (page 105, on the right side). Please draw the graphs representing R^i for i = 2, 3, 4, and R^*.
R'

- (a, b)
- (a, c)
- (b, e)
- (c, e)
- (d, b)
- (d, c)
- (d, e)
- (e, a)

R^2

- (a, e)
- (a, e)
- (b, a)
- (c, a)
- (d, e)
- (d, e)
- (d, a)
- (e, b)
- (e, c)
• (2p) Please draw the sequences of 2-3 tree and 2-3-4 tree, respectively, after each insertion of the following elements (in the given order): 10, 9, 8, 7, 6, 5, 4, 3, 2, 1. The trees are assumed empty initially.