When asking for designing an algorithm, both English description and pseudo-code are required. When asking for an efficient algorithm, the score will depend on how efficient your algorithm is.

1. (25 points) Suppose the array A contains [8, 3, 4, 9, 1]. (a) Please display the contents of the array before and after each call to merge and count the number of comparisons used. (b) Please do the same for the bottom-up mergesort.

Answer:
(a) mergesort([8, 3, 4, 9, 1]) = merge(mergesort([8, 3]), mergesort([4, 9, 1])) = merge([3, 8], [1, 4, 9]) = [1, 3, 4, 8, 9] using 4 comparisons; mergesort([8, 3]) = merge([8], [3]) = [3, 8] using 1 comparison; mergesort([4, 9, 1]) = merge([4], mergesort([9, 1])) = merge([4], [1, 9]) = [1, 4, 9] using 2 comparisons; mergesort([9, 1]) = merge([9], [1]) = [1, 9] using 1 comparison; The total number of comparisons is 8. (A graphical illustration is more intuitive.)
(b) After two ones merge into a two: [8, 3, 4, 9, 1] => [3, 8, 4, 9, 1] (2 comparisons) After two twos merge into a four: [3, 8, 4, 9, 1] => [3, 4, 8, 9, 1] (3 comparisons) The final merge of [3, 4, 8, 9] and [1] produces [1, 3, 4, 8, 9] (1 comparison). The total number of comparisons is 6.

In mergesort, the array can also break as [8,3,4] and [9,1], and [8,3,4] breaks into [8,3] and [4].

2. (25 points) The function F(n) will compute the nth Fibonacci number for n >= 0:

\[
\text{int } F(\text{int } n) \{ \text{ if } (n == 0 \text{ || } n == 1) \text{ return 1; else return } F(n-1)+F(n-2); \}
\]

Please define the number of “+” operations used to compute F(n) as a function A(n) and prove formally that A(n) = F(n) – 1 for n >= 0.

Answer: A(n) can be recursively defined as:
A(0) = A(1) = 0 (because F(0) and F(1) doesn’t use “+”).
A(n) = A(n–1)+A(n–2) + 1 for n > 1 (A(n–1) is the cost of F(n–1), A(n–2) is the cost of F(n–2), and “1” is for “+” in “F(n–1)+F(n–2)”.

To show A(n) = F(n) – 1, we use mathematical induction.
Base cases: n = 0 or 1. A(0) = A(1) = 0 = F(0) – 1 = F(1) – 1.
Induction hypotheses: A(n–1) = F(n–1) –1 and A(n–2) = F(n–2) –1 for n > 1.
Inductive case:
\[A(n) = A(n-1) + A(n-2) + 1 \] // definition of \(A(n) \)
\[= F(n-1) - 1 + F(n-2) - 1 + 1 \] // induction hypotheses.
\[= F(n-1) + F(n-2) - 1 \]
\[= F(n) - 1 \] // definition of \(F(n) \)

3. (25 points) A compact data structure for a polynomial \(f(x) \), where the number of non-zero coefficients is \(k \), is to use two arrays: \(C[0..(k-1)] \) stores non-zero coefficients and \(D[0..(k-1)] \) stores the corresponding degrees of these non-zero coefficients. For example, if \(f(x) = 5x^{100} + 3x^{20} - 2x^4 \), then \(k = 3 \), \(C = [5, 3, -2] \) and \(D = [100, 20, 4] \). Given \(C[] \) and \(D[] \) for any \(k \), design an efficient algorithm
\[
\text{double eval(double e, int k, double[]} C, \text{int[]} D),
\]
to compute \(f(e) \) for any given number \(e \), such that the number of multiplications is minimized. Please analyze the complexity of your algorithm.
Answer: We will use \(\text{fastpower}(x, n) \) in \(\text{eval} \):

\[
\text{double eval(double e, int k, double[]} C, \text{int[]} D) \{
\text{ double } s = 0; D[k] = 0;
\text{ for (int i = 0; i<k; i++) } s = (s + C[i]) \ast \text{fastpower}(e, D[i] - D[i+1]);
\text{ return } s;
\}
\]

\[
\text{double fastpower(double e, int n) } \{
\text{ if (n == 0) return 1.0;}
\text{ if (n == 1) return e;}
\text{ double x = fastpower(e, (n>>1));}
\text{ if ((n & 1) == 0) return x} \ast x;
\text{ return x} \ast x \ast e;
\}
\]

The number of multiplications is \(O(k + \text{sum } i=0 \text{ to } k-1 (\log_2(D[i] - D[i+1]))) \).

For \(f(x) = 5x^{100} + 3x^{20} - 2x^4 \), the number of used multiplications is \(3+7+4+2 = 16 \).

4. (25 points) We like to sort \(n \) student records by their grades for a course. If the grades are A, B or C, what is the most efficient sorting algorithm for this job? If the students are stored in an array, what is the most efficient in-place sorting algorithm for this job? Please provide the algorithms in details.

Answer: Suppose the students records are stored in the array \(S[0...n-1] \). The solution below takes \(O(n) \) time and works for both cases. \(S[0..a] \) are ‘A’; \(S[c..n-1] \) are ‘C’.

\[
\text{Sortbyscore(S, n) } \{
\text{ int } a = -1, b=0, c = n;
\text{ while (b<c) }
\}
\]
switch(score(S[b])) {
 case 'A': a++; swap(S, a, b); b++; break;
 case 'B': b++; break;
 case 'C': c--; swap(S, b, c); break;
}}