1. (30 points) Design an efficient sorting algorithm for an array of n integers where for each element x of the array, $0 < x < n^2$. Please provide the complexity of your algorithm.

2. (30 points) Given a list $L = [a_1, a_2, \ldots, a_n]$ of integers, the longest non-decreasing subsequence problem is to find the length of longest non-decreasing subsequences of L, denoted by LNDS(L). For example, if $L = [2, 2, 1, 7, 3, 8]$, then $[2, 2, 7, 8]$ is a longest non-decreasing subsequence of L and LNDS(L) = 4. Please design an efficient algorithm to compute LNDS(L) and analyze its complexity.

3. (40 points) In a company, the supervisor-supervisee relation can be represented by a single tree T, with the president being the root of the tree. Given the tree T, you are asked to compute the maximal number of employees that can be invited to a party such that an employee and his/her immediate supervisor cannot be invited at the same time. Please design an efficient algorithm for this problem and analyze its time complexity.