C-3.1 Suppose you are given a sorted array, A, of n distinct integers in the range from
1 to n+1, so there is exactly one integer in this range missing from A. Describe
an O(log n)-time algorithm for finding the integer in this range that is not in A.

def ModifiedBinarySearch(arr, 1, r, x):
while 1 <= r:
mid = (1 + r)/2;

if arr[mid] == mid + 1:
return mid

elif arr[mid] > mid:
r =mid - 1

else:
1l =mid + 1

C-3.2 Let S and T be two ordered arrays, each with n items. Describe an O(log n)-
time algorithm for finding the kth smallest key in the union of the keys from S
and T (assuming no duplicates).

def kthlargest(arrl, arr2, k):
if len(arrl) ==
return arr2[k]
elif len(arr2) ==
return arrl[k]

len(arrl) /2

ml

len(arr2) /2

m2
if ml + m2 < k:
if arrl[ml] > arr2[m2]:
return kthlargest(arrl, arr2[m2+1:], k-m2-1)
else:
return kthlargest(arrl[ml+l:], arr2, k-ml-1)
else:
if arrl[ml]>arr2[m2]:

return kthlargest(arrl[:ml], arr2, k)



else:

return kthlargest(arrl, arr2[:m2], k)

C-3.3 Describe how to perform the operation findAllElements(k), which returns every
element with a key equal to k (allowing for duplicates) in an ordered set of n keyvalue
pairs stored in an ordered array, and show that it runs in time O(log n+s),

where s is the number of elements returned.

def findAllElements(arr, 1, r, k):
while 1 <= r:
mid = (1 + r)/2;

if arr[mid] .key <= k:
r =mid - 1
else:
1l =mid + 1
allElements = []
while arr[mid] .key ==
allElements.append (arr[mid])
mid += 1
return allElements

C-3.4 Describe how to perform the operation findAllElements(k), as defined in the
previous exercise, in an ordered set of key-value pairs implemented with a binary
search tree T, and show that it runs in time O(h + s), where h is the height of T
and s is the number of items returned.

def findAllElements(k, v, c):
if v is an external node then
return c
if k = key(v) then
c.addLast (v)
return findAllElements (k,T.right(v), c)
else if k < key(v) then
return findAllElements(k,T.left(v), c)
else // {we know k > key(v)}
return findAllElements (k,T.right(v), c)



C-3.7 Let S be an ordered set of n items stored in a binary search tree, T, of height h.
Show how to perform the following method for S in O(h) time:

countAllinRange(k1, k2): Compute and return the number of items in S with

key k such that k1 < k < k2.

def getCount(root, low, high):
if root.data == high and root.data == low:
return 1

# If current node is in range, then include it in count and
# recurse for left and right children of it

if root.data <= high and root.data >= low:
return (1 + getCount(root.left, low, high) +
getCount (root.right, low, high))

# If current node is smaller than low,
# then recurse for right child
elif root.data < low:
return getCount (root.right, low, high)
# Else recur for left child

else:
return getCount(root.left, low, high)

C 3.12 Without using calculus (as in the previous exercise), show that, if n is a power of
2 greater than 1, then, for Hn, the nth harmonic number,

Hn =1 + Hn/2.

Use this fact to conclude that Hn <1 + log n, forany n2 1.

Ho=1+%+%+%+ .. +1/(n/2)+1/(n/2+1) +...+1/n

H,=1+"%+"%+%+..+1/n/2

H,-H,=1Nn/2+1) +1/(n/2+2) +...+1/n

H,-H.,, <=1/(n/2) +1/(n/2) + ... +1/(n/2)

H,- H.,, <=(n/2) *1/(n/2) /I 1/(n/2) is being added (n/2) times

Hn_ Hn/2 <=1
Hn<= 1 + Hn/2



Hn=s1+logn
H,<=1+H,
Hypo<=1+H,=1+H,,0
Hn<= 1+1+ Hn/4=2 + Hn/(

212)

Ho<=1+1+1+H,=3+H,,,

Hn<= 1 + 1 + 1 1 + Hn/(2"k) = k(1) + Hn/(ZAk)
when 2k = n = k = log(n)

H, <=logn + H,
H. <=logn + 1



