C-3.1 Suppose you are given a sorted array, A, of n distinct integers in the range from 1 to n+1, so there is exactly one integer in this range missing from A. Describe an O(log n)-time algorithm for finding the integer in this range that is not in A.

```python
def ModifiedBinarySearch(arr, l, r, x):
    while l <= r:
        mid = (l + r)/2;

        if arr[mid] == mid + 1:
            return mid
        elif arr[mid] > mid:
            r = mid - 1
        else:
            l = mid + 1
```

C-3.2 Let S and T be two ordered arrays, each with n items. Describe an O(log n)-time algorithm for finding the kth smallest key in the union of the keys from S and T (assuming no duplicates).

```python
def kthlargest(arr1, arr2, k):
    if len(arr1) == 0:
        return arr2[k]
    elif len(arr2) == 0:
        return arr1[k]
    m1 = len(arr1)/2
    m2 = len(arr2)/2
    if m1 + m2 < k:
        if arr1[m1] > arr2[m2]:
            return kthlargest(arr1, arr2[m2+1:], k-m2-1)
        else:
            return kthlargest(arr1[m1+1:], arr2, k-m1-1)
    else:
        if arr1[m1]>arr2[m2]:
            return kthlargest(arr1[:m1], arr2, k)
else:
    return kthlargest(arr1, arr2[:m2], k)

C-3.3 Describe how to perform the operation findAllElements(k), which returns every element with a key equal to k (allowing for duplicates) in an ordered set of n key-value pairs stored in an ordered array, and show that it runs in time O(log n+s), where s is the number of elements returned.

def findAllElements(arr, l, r, k):
    while l <= r:
        mid = (l + r)/2;

        if arr[mid].key <= k:
            r = mid - 1
        else:
            l = mid + 1
    allElements = []
    while arr[mid].key == k:
        allElements.append(arr[mid])
        mid += 1
    return allElements

C-3.4 Describe how to perform the operation findAllElements(k), as defined in the previous exercise, in an ordered set of key-value pairs implemented with a binary search tree T, and show that it runs in time O(h + s), where h is the height of T and s is the number of items returned.

def findAllElements(k, v, c):
    if v is an external node then
        return c
    if k = key(v) then
        c.addLast(v)
        return findAllElements(k,T.right(v), c)
    else if k < key(v) then
        return findAllElements(k,T.left(v), c)
    else // {we know k > key(v)}
        return findAllElements(k,T.right(v), c)
C-3.7 Let $S$ be an ordered set of $n$ items stored in a binary search tree, $T$, of height $h$.
Show how to perform the following method for $S$ in $O(h)$ time:
$\text{countAllInRange}(k_1, k_2)$: Compute and return the number of items in $S$ with key $k$ such that $k_1 \leq k \leq k_2$.

```python
def getCount(root, low, high):
 if root.data == high and root.data == low:
 return 1

 # If current node is in range, then include it in count and
 # recurse for left and right children of it
 if root.data <= high and root.data >= low:
 return (1 + getCount(root.left, low, high) +
 getCount(root.right, low, high))

 # If current node is smaller than low,
 # then recurse for right child
 elif root.data < low:
 return getCount(root.right, low, high)

 # Else recur for left child
 else:
 return getCount(root.left, low, high)
```

C 3.12 Without using calculus (as in the previous exercise), show that, if $n$ is a power of 2 greater than 1, then, for $H_n$, the $n$th harmonic number,
$H_n \leq 1 + H_{n/2}$.
Use this fact to conclude that $H_n \leq 1 + \log n$, for any $n \geq 1$.

$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n/2} + \frac{1}{n/2+1} + \ldots + \frac{1}{n}$

$H_{n/2} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n/2}$

$H_n - H_{n/2} = 1/(n/2+1) + 1/(n/2+2) + \ldots + 1/n$

$H_n - H_{n/2} \leq 1/(n/2) + 1/(n/2) + \ldots + 1/(n/2)$

$H_n - H_{n/2} \leq (n/2) \times 1/(n/2) \quad // \ 1/(n/2)$ is being added $(n/2)$ times

$H_n - H_{n/2} \leq 1$

$H_n \leq 1 + H_{n/2}$
\[ H_n \leq 1 + \log n \]

\[ H_n \leq 1 + H_{n/2} \]

\[ H_{n/2} \leq 1 + H_{n/4} = 1 + H_{n/(2^2)} \]

\[ H_n \leq 1 + 1 + H_{n/4} = 2 + H_{n/(2^2)} \]

\[ H_n \leq 1 + 1 + 1 + H_{n/8} = 3 + H_{n/(2^3)} \]

\[ \ldots \]

\[ \ldots \]

\[ H_n \leq 1 + 1 + 1 \ldots 1 + H_{n/(2^k)} = k(1) + H_{n/(2^k)} \]

when \( 2^k = n \Rightarrow k = \log(n) \)

\[ H_n \leq \log n + H_1 \]

\[ H_n \leq \log n + 1 \]