Artificial Intelligence

Informed Search and Exploration

Readings: Chapter 4 of Russell & Norvig.
Example: n-queens
Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal.

- Case 1: Consider one (fixed) cell at a time
- Case 2: Consider one row at a time
- Case 3: Consider one queen at a time
n-queens

- **Case 1:** Consider one (fixed) cell at a time
- **Case 2:** Consider one row at a time
- **Case 3:** Consider one queen at a time

<table>
<thead>
<tr>
<th></th>
<th>case 1</th>
<th>case 2</th>
<th>case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branching factor:</td>
<td>2</td>
<td>n</td>
<td>n^2</td>
</tr>
<tr>
<td>Maximal depth:</td>
<td>n^2</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>State space:</td>
<td>2^{n^2}</td>
<td>n^n</td>
<td>n^{2^n}</td>
</tr>
</tbody>
</table>
function TREE-SEARCH(problem, fringe) returns a solution, or failure

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

 if fringe is empty then return failure

 node ← REMOVE-FRONT(fringe)

 if GOAL-TEST[problem](STATE(node)) return node

 fringe ← INSERTALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of node expansion
Uninformed Search Strategies

<table>
<thead>
<tr>
<th>Strategies</th>
<th>Time</th>
<th>Space</th>
<th>Complete?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth-first Search</td>
<td>$O(b^d)$</td>
<td>$O(b^d)$</td>
<td>Yes</td>
</tr>
<tr>
<td>Depth-first Search</td>
<td>$O(b^m)$</td>
<td>$O(bm)$</td>
<td>No</td>
</tr>
<tr>
<td>Depth-limited Search</td>
<td>$O(b^l)$</td>
<td>$O(bl)$</td>
<td>No</td>
</tr>
<tr>
<td>Iterative Deepening Search</td>
<td>$O(b^d)$</td>
<td>$O(bd)$</td>
<td>Yes</td>
</tr>
<tr>
<td>Uniform Cost Search</td>
<td>$O(b^d)$</td>
<td>$O(b^d)$</td>
<td>Yes</td>
</tr>
</tbody>
</table>

where b is the branching factor, d is the depth of the shadowest solution, m is the length of the longest path, l is the limit set by the user.
Informed Search Strategies

- Uninformed search strategies look for solutions by systematically generating new states and checking each of them against the goal.

- This approach is very inefficient in most cases.

- Most successor states are “obviously” a bad choice.

- Such strategies do not know that because they have minimal problem-specific knowledge.

- **Informed** search strategies exploit problem-specific knowledge as much as possible to drive the search.

- They are almost always *more efficient* than uninformed searches and often also *optimal*.
Informed Search Strategies

Main Idea

- Use the knowledge of the problem domain to build an evaluation function f.

- For every node n in the search space, $f(n)$ quantifies the desirability of expanding n in order to reach the goal.

- Then use the desirability value of the nodes in the fringe to decide which node to expand next.
Informed Search Strategies

\[f \] is typically an *imperfect measure* of the goodness of the node. The right choice of nodes is not always the one suggested by \(f \).

It is possible to build a perfect evaluation function, which will always suggest the right choice.

How?

Why don’t we use perfect evaluation functions then?
Standard Assumptions on Search Spaces

- The cost of a node increases with the node’s depth.

- Transitions costs are non-negative and bounded below. That is, there is a $\delta > 0$ such that the cost of each transition is $\geq \delta$.

- Each node has only finitely-many successors.

Note: There are problems that do not satisfy one or more of these assumptions.
Best-First Search

- Idea: use an *evaluation function* for each node to estimate of “desirability”
- Strategy: Always expand most desirable unexpanded node
- **Implementation**: fringe is a priority queue sorted in decreasing order of desirability
- Special cases:
 - uniform-cost search
 - greedy search
 - A* search
Implementing Best-first Search

function BEST-FIRST-SEARCH(*problem*, Eval-FN) **returns** a solution sequence

inputs: *problem*, a problem

 Eval-Fn, an evaluation function

Queueing-Fn ← a function that orders nodes by Eval-FN

return GENERAL-SEARCH(*problem*, Queueing-Fn)

function GENERAL-SEARCH(*problem*, QUEUING-FN) **returns** a solution, or failure

 nodes ← MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))

 loop do
 if nodes is empty then **return** failure
 node ← REMOVE-FRONT(nodes)
 if GOAL-TEST[problem] applied to STATE(node) succeeds then **return** node
 nodes ← QUEUING-FN(nodes, EXPAND(node, OPERATORS[problem]))
 end
Best-first Search Strategies

- There is a *whole family* of best-first search strategies, each with a different evaluation function.

- Typically, strategies use estimates of the *cost* of reaching the goal and try to *minimize* it.

- Uniform Search also tries to minimize a cost measure.

- Is it a best-first search strategy?

- Not in spirit, because the evaluation function should incorporate a *cost estimate of going from the current state to the closest goal state*.
Greedy Search

- Evaluation function $h(n)$ (heuristic) is an estimate of cost from n to the closest goal. E.g., $h_{SLD}(n) =$ straight-line distance from n to Bucharest.

- Greedy search expands the node that *appears* to be closest to the goal.
Greedy Search Example
Greedy Search Example
Greedy Search Example

![Graph Diagram]

- **Arad** 366
- **Fagaras** 176
- **Oradea** 380
- **Rimnicu Vilcea** 193
- **Sibiu**
- **Timisoara** 329
- **Zerind** 374
Greedy search example
Properties of Greedy Search

- Complete??
Properties of greedy search

- **Complete??** No—can get stuck in loops, e.g., with Oradea as goal, Iasi → Neamt → Iasi → Neamt → Complete in finite space with repeated-state checking

- **Time??**
Properties of Greedy Search

- **Complete??** No—can get stuck in loops, e.g.,
 Iasi → Neamt → Iasi → Neamt →
 Complete in finite space with repeated-state checking

- **Time??** $O(b^m)$, but a good heuristic can give dramatic improvement

- **Space??**
Properties of Greedy Search

- **Complete??** No—can get stuck in loops, e.g., Iasi → Neamt → Iasi → Neamt → Iasi → Neamt → Iasi
 Complete in finite space with repeated-state checking

- **Time??** \(O(b^m) \), but a good heuristic can give dramatic improvement

- **Space??** \(O(b^m) \)—keeps all nodes in memory

- **Optimal??**
A* Search

- Idea: avoid expanding paths that are already expensive
- Evaluation function $f(n) = g(n) + h(n)$
- $g(n) =$ cost so far to reach n
 $h(n) =$ estimated cost to goal from n
 $f(n) =$ estimated total cost of path through n to goal
- A* search uses an admissible heuristic
 i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the true cost from n to a goal.
 (Also require $h(n) \geq 0$, so $h(G) = 0$ for any goal G.)
 E.g., $h_{SLD}(n)$ never overestimates the actual road distance
- Theorem: A* search is optimal if h is admissible.
A* Search Example

\[366 = 0 + 366 \]
A* Search Example
If h is admissible, $f(n)$ never overestimates the actual cost of the best solution through n.

Overestimates are dangerous (h values are shown)

The optimal path is never found! (or maybe after a long time)
Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G.

$$f(G_2) = g(G_2) \quad \text{since } h(G_2) = 0$$
$$> g(G') \quad \text{since } G_2 \text{ is suboptimal}$$
$$\geq f(n) \quad \text{since } h \text{ is admissible}$$

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion.
Optimality of A* (more useful)

Lemma: A* expands nodes in order of increasing f value
Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$
Properties of A*

- Complete??
Properties of A*

- **Complete**?? Yes, unless there are infinitely many nodes with $f \leq f(G)$
- **Time**??
Properties of A*

- **Complete??** Yes, unless there are infinitely many nodes with $f \leq f(G')$
- **Time??** $O(f \times |\{n \mid f(n) \leq f(G')\}|)$ (exponential in general in terms of the length of solutions)
- **Space??**
Properties of A*

- **Complete??** Yes, unless there are infinitely many nodes with \(f \leq f(G) \)

- **Time??** \(O(f \ast |\{n \mid f(n) \leq f(G)\}|) \) (exponential in general in terms of the length of solutions)

- **Space??** \(O(|\{n \mid f(n) \leq f(G)\}|) \)

- **Optimal??**
Properties of A*

- **Complete??** Yes, unless there are infinitely many nodes with $f \leq f(G)$
- **Time??** $O(f \ast |\{n \mid f(n) \leq f(G')\}|)$ (exponential in general in terms of the length of solutions)
- **Space??** $O(|\{n \mid f(n) \leq f(G')\}|)$
- **Optimal??** Yes—cannot expand f_{i+1} until f_i is finished.
 - A* expands all nodes with $f(n) < C^*$
 - A* expands some nodes with $f(n) = C^*$
 - A* expands no nodes with $f(n) > C^*$
A heuristic is **consistent** if

\[h(n) \leq c(n, a, n') + h(n') \]

If \(h \) is consistent, we have

\[
\begin{align*}
 f(n') &= g(n') + h(n') \\
 &= g(n) + c(n, a, n') + h(n') \\
 &\geq g(n) + h(n) \\
 &= f(n)
\end{align*}
\]

I.e., \(f(n) \) is nondecreasing along any path.
Admissible Heuristics

For the 8-puzzle:

- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance (i.e., number of squares from desired location of each tile)

Start State

\[
\begin{array}{ccc}
7 & 2 & 4 \\
5 & 6 & \\
8 & 3 & 1 \\
\end{array}
\]

Goal State

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & \\
\end{array}
\]

$h_1(S) =$??

$h_2(S) =$??
Admissible Heuristics

For the 8-puzzle:

- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance (i.e., number of squares from desired location of each tile)

Start State

<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Goal State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

$h_1(S) = ?? 7$
$h_2(S) = ?? 4+0+3+3+1+0+2+1 = 14$
Dominance

- Definition: If $h_2(n) \geq h_1(n)$ for all n (both admissible) then h_2 dominates h_1.

- For 8-puzzle, h_2 indeed dominates h_1.
 - $h_1(n) = $ number of misplaced tiles
 - $h_2(n) = $ total Manhattan distance

- If h_2 dominates h_1, then h_2 is better for search.

- For 8-puzzle, search costs:

 \[
 d = 14 \quad \text{IDS} = 3,473,941 \text{ nodes (IDS = Interactive Deepening Search)}
 \]
 \[
 A^*(h_1) = 539 \text{ nodes}
 \]
 \[
 A^*(h_2) = 113 \text{ nodes}
 \]

 \[
 d = 24 \quad \text{IDS} \approx 54,000,000,000 \text{ nodes}
 \]
 \[
 A^*(h_1) = 39,135 \text{ nodes}
 \]
 \[
 A^*(h_2) = 1,641 \text{ nodes}
 \]
Optimality/Completeness of A* Search

If the problem is solvable, A* always finds an optimal solution when

- the standard assumptions are satisfied,
- the heuristic function is admissible.

A* is optimally efficient for any heuristic function h: No other optimal strategy expands fewer nodes than A* when using the same h.
Complexity of A* Search

- **Worst-case time complexity:** still exponential ($O(b^d)$) unless the error in h is bounded by the logarithm of the actual path cost. That is, unless

 $$|h(n) - h^*(n)| \leq O(\log h^*(n))$$

 where $h^*(n) =$ actual cost from n to goal.

- **Worst-Case Space Complexity:** $O(b^m)$ as in greedy best-first.

- A* generally runs out of memory before running out of time. (Improvements: IDA*, SMA*).
IDA* and SMA*

- IDA* (Iteractive Deepening A*): Set a limit and store only those nodes x whose $f(x)$ is under the limit. The limit is increased by some value if no goal is found.

- SMA* (Simplified Memory-bound A*): Work like A*; when the memory is full, drop the node with the highest f value before adding a new node.
Relaxed Problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem.

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem.
Relaxed Problems

Well-known example: traveling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O(n^2)$
and is a lower bound on the shortest (open) tour
Local Search Algorithms

In many optimization problems, *path* is irrelevant; the goal state itself is the solution.

Define state space as a set of "complete" configurations; find *optimal* configuration, e.g., TSP or, find configuration satisfying constraints, e.g., timetable

State space = set of "complete" configurations.

In such cases, can use local search (or iterative improvement) algorithms; keep a single "current" state, try to improve it.

Constant space, suitable for online as well as offline search
Local Search Example: TSP

- TSP: Traveling Salesperson Problem
- Start with any complete tour, perform pairwise exchanges

For n cities, each state has $n(n - 1)/2$ neighbors.
Local Search Example: n-queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal.
- Change the row of a queen in a given column to reduce the number of conflicts.

For n queens, each state has $n(n-1)$ neighbors.
Local Search Example: 8-queens

Standard and Compact Representations:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
c = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 7 & 2 & 6 & 1 & 4 & 3 & 8 \\
-4 & -5 & 1 & -2 & 4 & 2 & 4 & 0 \\
6 & 9 & 5 & 10 & 6 & 10 & 10 & 16
\end{bmatrix}
\]

Operation: Switching two columns.
Neighbors of each state: \(8 \times 7/2 = 28\).
Hill-Climbing (or Gradient Descent)

"Like climbing Everest in thick fog with amnesia"

function Hill-Climbing(problem) return state
node: current, neighbor;
current := Make-Node(Initial-State(problem));
loop do
 neighbor := highest-value-successor(current)
 if (Value(neighbor) < Value(current))
 then return State(current)
 else current := neighbor
end loop
end function

The returned state is a local maximum state.
Performance of Hill-Climbing

- Quality of the solution
 Problem: depending on initial state, can get stuck on local maxima

- Time to get the solution
 In continuous spaces, problems may be slow to converge.
 Choose a good initial solution; find good ways to compute the cost function

Improvements: Simulated annealing, tabu search, etc.