1. [40] Decide if the following languages are context-free. If yes, provide a context free grammar; if not, prove it by the pumping lemma and provide a decider for it.

(a) \(L_1 = \{a^i b^j a^i \mid i \geq j \geq 1 \} \);
This one is not CF. Using the standard pumping with \(z = a^N b^N a^N \) will do.
The description of the decider is skipped here.

(b) \(L_2 = \{a^i b^j a^i b^j \mid i \geq j \geq 1 \} \).
This one is not CF, either. Using the standard pumping with \(z = a^N b^N a^N b^N \) will do.
The description of the decider is skipped here.

2. [40] Decide with full arguments if the following problems are decidable (you may use any results given in the class):

(a) For any given standard Turing machine \(M \), any input word \(w \) and any integer number \(n \), will \(M \) runs on \(w \) for at least \(n \) steps?
This problem is decidable because the corresponding language
\[
L = \{\langle M, w, n \rangle \mid M \text{ runs on } w \text{ for at least } n \text{ steps}\},
\]
is total Turing-recognizable, where \(\langle M, w, n \rangle \) is the codes of \(M \), \(w \) and \(n \). That is, we can construct an algorithm to accept \(L \) as follows: The algorithm simulates \(M \) on \(w \) for at most \(n \) steps. If \(M \) doesn’t stop before \(n \) steps, the algorithm returns yes; otherwise no.

(b) For any given standard Turing machine \(M \), any input word \(w \) and any tape symbol \(x \), will \(x \) appear on the tape when \(M \) runs on \(w \)?
This problem is undecidable because the corresponding language
\[
L = \{\langle M, w, a \rangle \mid a \text{ appears on the tape when } M \text{ runs on } w\}
\]
is not total Turing-recognizable. Suppose \(L \) is total Turing-recognizable, then there exists an algorithm \(A \) to accept \(L \). Now we can construct an algorithm \(B \) to accept the universal language \(L_u = \{\langle M, w \rangle \mid w \in \text{L(M)}\} \) as follows: For the input \(\langle M, w \rangle \) to \(B \), \(B \) converts the input to the code of a new machine \(M' \) and then feeds \(\langle M', w, x \rangle \) to \(A \), where \(x \) is a new symbol not used by the encoding of \(\langle M, w \rangle \). \(B \) returns what \(A \) returns.
The property of \(M' \) is that \(M' \) prints \(x \) on the tape iff \(M \) accepts \(w \). That is, \(M' \) simulates \(M \) on \(w \). If \(M \) accepts \(w \), then \(M' \) prints \(x \) on the tape and then halts. Since \(A \) can tell if or not \(x \) will be printed on the tape, so \(B \) can tell if or not \(M \) accepts \(w \).

3. (40) Let \(\text{SET-SPLITTING} = \{\langle S, C \rangle \mid S \text{ is a finite set and } C = \{C_1, ..., C_k\} \text{ is a collection of subsets of } S, \text{ for some } k > 0, \text{ such that elements of } S \text{ can be colored red or blue so that no } C_i \text{ has all its elements colored with the same color.}\} \) Show that (a) \(\text{SET-SPLITTING} \) is in NP; (b) \(3\text{SAT} \leq_p \text{SET-SPLITTING}. \)
This is one of the last homework problems.