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Abstract— The equality and anonymity of peer-to-peer
networks makes them vulnerable to routing denial of
service attacks from misbehaving nodes. In this paper,
we investigate how existing social networks can benefit
P2P networks by leveraging the inherent trust associated
with social links. We present a trust model that lets us
compare routing algorithms for P2P networks overlaying
social networks. We propose SPROUT, a DHT routing
algorithm that significantly increases the probability of
successful routing by using social links. Finally, we discuss
further optimization and design choices for both the model
and the routing algorithm.

I. INTRODUCTION

Because of the anonymity of peers and the lack
of a centralized enforcement agency, P2P systems are
especially vulnerable to a category of attacks we call
misrouting attacks. We use the term misrouting to refer
to any failure by a node to forward a message to the ap-
propriate peer according to the correct routing algorithm.
This includes dropping the message or forwarding the
message to other colluding nodes instead of the correct
peer, perhaps in an attempt to control the results of a
query. A malicious node may wish to masquerade as
the index owner of the key being queried for in order to
disseminate bad information and suppress content shared
by other peers.

In addition, malicious users can acquire several
valid network identifiers and thus control multiple dis-
tinct nodes in the network. This is referred to as the
Sybil attack and has been studied by various groups
(e.g. [4] [3] [7]). This implies that a small number of ma-
licious users can control a large fraction of the network
nodes, increasing the probability that they participate in
any given message route.

To avoid routing messages through possibly malicious
nodes, we would prefer forwarding our messages through
nodes controlled by people we know personally, perhaps
from a real life social context. We could most likely
assume our friends would not purposefully misroute our

messages.1 Likewise, our friends could try and forward
our message through their friends’ nodes. This would
require a mechanism to identify who our social contacts
are and locate them in the network when they are online.

Fortunately, this mechanism already exists in the form
of various social network services. AOL, Microsoft,
and Yahoo! all provide instant messaging services to
millions of users, alerting them when their friends log
on. Many websites, like Friendster, specialize in creating
and utilizing social networks. We propose building peer-
to-peer networks which leverage these existing social
network services to establish additional, highly trusted,
links at little additional cost. To determine the value of
such a system we need a new way of modelling social
trust and how it translates to the chance of misrouting.
We present such a trust model in Section II.

Adopting social links in an unstructured P2P network
is relatively simple, since nodes are free to connect to any
peers. However, using them in structured networks (e.g.
DHTs) is more challenging because peer connections
are typically determined algorithmically. In Section III
we present SPROUT, a routing algorithm that takes
advantage of social links in structured networks, and
compare it to current standard routing techniques in
Section IV. Social networks can be exploited by P2P
systems for a variety of other reasons. In Section V we
discuss application scenarios where our model is useful,
as well as other related and future work. Finally, we
conclude in Section VI.

II. TRUST MODEL

The basic assumption of this paper is that computers
managed by friends are not likely to be selfish or
malicious and deny us service or misroute our mes-
sages. Similarly, friends of friends are also unlikely
to be malicious. We assume the likelihood of a node
B purposefully misrouting a message from node A is
proportional to the distance from A’s owner to B’s owner
in the social network.

1We assume a slim, but nonzero, chance that a virus or trojan has
infected their machine, causing it to act maliciously.



A. Trust Function

We express the trust that a node A has in node B

as T (A, B). Based on our assumption, this value is
dependent only on the distance (in hops) d from A to
B in the social network. To quantify this measure of
trust we use the expected probability that node B will
correctly route a message from node A. The reason for
this choice will become apparent shortly.

One simple trust function would be to assume our
friends’ nodes are very likely to correctly route our
messages, say with probability f = 0.95. But their friends
are less likely (0.90), and their friends even less so
(0.85). A node’s trustworthiness decreases linearly with
respect to its distance from us in the social network.
This would level off when we hit the probability that
any random node will successfully route a message,
say r = 0.6. In large networks probability r repre-
sents the fraction of the network expected to be good
nodes willing to correctly route messages. Thus, r =
0.6 indicates that we expect that 40% of the network
nodes (or more accurately network node identifiers) will
purposefully misroute messages. In smaller networks, r

is the probability that a peer at a large social distance
from us will route correctly. Here we have presented a
linear trust function. We consider others in Section IV-C.

We do not claim any of these functions with any spe-
cific parameter values is an accurate trust representation
of any or all social networks, but they do serve to express
the relation we believe exists between social structure
and the probability of intentional routing misbehavior.

B. Path Rating

We need to compare the likelihood that a message
will reach its destination given the path selected by a
routing algorithm. For this reliability metric we calculate
a path trust rating, denoted by P , by multiplying the
separate node trust ratings for each node along the
routing path from the source to destination. For example,
assume source node S wishes to route a message to
destination node D. In order to do so a routing algorithm
calls for the message to hop from S to A, then B,
then C, and finally D. Then the path rating will be
P = T (S, A) ∗ T (S, B) ∗ T (S, C) ∗ T (S, D). Given that
T (X, Y ) is interpreted as the actual probability node
Y correctly routes node X’s message, then P is the
probability that the message is received and properly
handled by D. Note that T (X, Y ) is dependent only on
the shortest path in the social network between X and Y

and thus independent of whether Y was the first, second,
or nth node along the path.

Including the final destination’s trust rating is optional
and dependent on what we are measuring. If we wish to
account for the fact that the destination may be malicious
and ignore a message, we include it. Since we are using
path rating to compare routing algorithms going to the
same destination, both paths will include this factor,
making the issue irrelevant.

III. SOCIAL PATH ROUTING ALGORITHM

We wish to leverage the assumed correlation between
routing reliability and social distance by creating a peer-
to-peer system that utilizes social information from a ser-
vice such as a community website or instant messenger
service. Though there are many ways to exploit social
links, for this paper, we focus on building a distributed
hash table (DHT) routing algorithm. Specifically, we
build on the basic Chord routing algorithm [11]. Our
technique is equally applicable to other DHT designs,
such as CAN [9] or Pastry [10].

When a user first joins the Chord network, it is
randomly assigned a network identifier from 0 to 1.
It then establishes links to its sequential neighbors in
idspace, forming a ring of nodes. It also makes O(logn)
long links to nodes halfway around the ring, a quarter of
the way, an eighth, etc. When a node inserts or looks up
an item, it hashes the item’s key to a value between 0 and
1. Using greedy clockwise routing it can locate the peer
whose id is closest to the key, and is thus responsible
for indexing the item, in O(logn) hops.

Our Social Path ROUTing (SPROUT) algorithm adds
to Chord additional links to any friends that are online.
All popular instant messenger services keep a user aware
of when their friends enter or leave the network. Using
this existing mechanism a node can maintain links to
their friends in the DHT as well. This provides them with
several highly trusted links to use for routing messages.
When a node needs to route to key k SPROUT works
as follows:

1) Locate the friend node whose id is closest to, but
not greater than, k.

2) If such a friend node exists, forward the message
to it. That node repeats the procedure from step 1.

3) If no friend node is closer to the destination,
then use the regular Chord algorithm to continue
forwarding to the destination.

A. Optimizations

Here we present two techniques to improve the per-
formance of our routing algorithm. We evaluate them in
Section IV-B.



1) Lookahead: With the above procedure, when we
choose the friend node closest to the destination we do
not know if it has a friend to take us closer to the
destination. Thus, we may have to resort to regular Chord
routing after the first hop. To improve our chances of
finding social hops to the destination we can employ
a lookahead cache of 1 or 2 levels. Each node may
share with its friends a list of its friends and, in 2-
level lookahead, its friends-of-friends. A node can then
consider all nodes within 2 or 3 social hops away
when looking for the node closest to the destination.
We still require that the message be forwarded over the
established social links.

2) Minimum Hop Distance: Though SPROUT guar-
antees forward progress towards the destination with
each hop, it may happen that at each hop SPROUT finds
the sequential neighbor is the closest friend to the target.
Thus, in the worst case, routing is O(n).

To prevent this we use a minimum hop distance
(MHD) to ensure that the following friend hop covers at
least MHD fraction of the remaining distance (in idspace)
to the destination. For example, if MHD = 0.25, then
the next friend hop must be at least a quarter of the
distance from the current node to the destination. If not
then we resort to Chord routing, where each hop covers
approximately half of the distance. This optimization
guarantees us O(logn) hops to any destination but
causes us to give up on using social links earlier in the
routing process. When planning multiple hops at once,
due to lookahead, we require the path to cover MHD

k

additional distance for each additional hop, for some
appropriate k.

IV. RESULTS

In this section we evaluate our friend-routing algo-
rithm as well as present optimizations. We also discuss
the trust model and compare the different trust functions.

A. Simulation Details

To try out our SPROUT algorithm for DHTs we
decided to compare it to Chord. We use two sources
for social network data for our simulations. The first
is data taken from the Club Nexus community website
established at Stanford University. This dataset consists
of over 2200 users and their links to each other as
determined by their Buddy Lists. The second source was
a synthetic social network generator based on the Small
World topology algorithm presented in [8]. Both the
Club Nexus data and the Small World data created social
networks with an average of approximately 8 links per

TABLE I
SPROUT VS. CHORD

Avg. Path Length Avg. Reliability
Regular Chord 5.343 0.3080
Augmented Chord 4.532 0.3649
SPROUT(1,0.5) 4.569 0.4661

node. We assigned each social network node a random
id in Chord.

We also ran experiments using a trace of a social
network based on 130,000 AOL Instant Messenger users
and their Buddy Lists provided by BuddyZoo [2]. Be-
cause of the size of this dataset, we have only used the
data to verify results of our other experiments.

For each experiment we chose 1000 random nodes
and, for each node, 1000 random keys to search for
(uniformly from 0 to 1). We computed a path using each
routing algorithm and gathered statistics on path length
and trust rating. Each data point presented below is the
average of all 1,000,000 paths.

In Section IV-B we use the linear trust function
described in Section II with f = 0.95 and r = 0.6, which
corresponds to 40% of the nodes misbehaving. We feel
such a large fraction of bad nodes is reasonable because
of the threat of Sybil attacks. We evaluate different trust
functions and parameter values in Section IV-C.

B. Algorithm Evaluation

We first evaluate SPROUT, using a lookahead of 1
and MHD = 0.5, to Chord using the Club Nexus social
network data. The first and third rows of Table I give
the measured values for both the average path length and
average path rating (or path reliability) of both regular
Chord routing and SPROUT. With an average path length
of 5.343 and average rating per path of 0.3080, Chord
performed much worse in both metrics than SPROUT,
which attained values of 4.569 and 0.4661, respectively.
In fact, a path is over 1.5 times as likely to succeed using
standard SPROUT as with regular Chord.

But this difference in performance may be simply
due to SPROUT having additional links available for
routing, and the fact that they are friend links may
have no effect on performance. To even the comparison
we augmented Chord by giving each node an equal
number of random links for Chord to use as it has friend
links. The performance of the augmented Chord (AC) is
given in the second row of Table I. As expected, with
more links to choose from AC performs significantly
better than regular Chord, especially in terms of path
length. But SPROUT is still 1.3 times as likely to route



TABLE II
EVALUATING LOOKAHEAD AND MHD

Lookahead
MHD None 1-level 2-level

Length Rating Length Rating Length Rating
0 4.875 0.4068 5.101 0.4420 5.378 0.4421
0.125 4.805 0.4070 5.003 0.4464 5.258 0.4478
0.25 4.765 0.4068 4.872 0.4525 5.114 0.4551
0.5 4.656 0.4033 4.569 0.4661 4.757 0.4730

successfully. In the following sections we compare
SPROUT only to the augmented Chord algorithm.

How were the lookahead and MHD values used above
chosen? Table II shows the results of our experiments in
varying both parameters in the same scenario. As we see,
the largest increase in reliability comes from using a 2-
level lookahead. But this comes at a slight cost in average
path length, due to the fact that more lookahead allows
us to route along friend links for more of the path. For
example, for MHD = 0.5, no lookahead averaged 0.977
social links per path, while 1-level lookahead averaged
2.533 and 2-level averaged 3.491. Friend links tend to
not be as efficient as Chord links, so forward progress
may require 2 or 3 hops, depending on the lookahead
depth. But friend links are more likely to reach nodes
closer to the sending node on the social network.

Increasing MHD limits the choices in forward pro-
gressing friend hops, causing the algorithm to switch
to Chord earlier than otherwise, but mitigates inefficient
progress. A large MHD seems to be most effective at
both shortening path lengths and increasing path rating.
This is not very surprising. Since our reliability function
is multiplicative each additional link appreciably drops
the path reliability.

From these results we chose to use a 1-level lookahead
and an MHD of 0.5 for our standard SPROUT procedure.
Though 2-level lookahead produced slightly better path
ratings we did not feel it warranted the longer route paths
and exponentially increased node state propagation and
management. Our available social network data indicates
that a user has on average between 8 and 9 friends. Thus,
we would expect the average node’s level-1 lookahead
cache to hold less than 100 entries.

The path ratings presented above were relatively small,
indicating a low, but perhaps acceptable, probability of
successfully routing to a destination in the DHT. If the
number of friends a user has remains relatively constant
but the total number of network nodes increases we
would expect performance to drop. But by how much?
To study this we ran our experiment using our synthetic
Small World model for networks of different sizes with
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Fig. 1. Performance of SPROUT and AC in different size Small
World networks. The third curve shows the relative performance of
SPROUT with respect to AC, plotted on the right-hand y-axis. Note
that the x-axis is logscale.

a maximum peer social degree proportional to O(log n).
We present these results in Figure 1.

We see that the drop in reliability for both routing
algorithms is linear with respect to log of the number
of nodes. If the average path length were Θ(logn) as
in Chord, we would expect the reliability to drop expo-
nentially with respect to logn. But the additional use of
social links resulted in average path length increasing
more slowly than Θ(log n). Notice that the relative
performance gain of SPROUT over AC increases as the
network grows. At 10,000 nodes SPROUT performs over
50% better than AC. As the network grows, the average
number of social links increases slightly. The benefit
SPROUT derives from additional friend links is greater
than the benefit AC derives from additional random links.

C. Calculating Trust

All of our previous results used a linear trust func-
tion with f = 0.95. Of course other trust functions or
parameter values may be more appropriate for different
scenarios. T (A, B), using the linear trust function LT

we previously described, is defined in Equation 1 as a
function of d, the distance from A to B in the social
network.

LT (d) = max(1− (1− f)d, r) (1)

Instead of a linear drop in trust, we may want to
model an exponential drop at each additional hop. For
this we use an exponential trust function ET , shown in
Equation 2.

ET (d) = max(fd, r) (2)

Another simple function we call the step trust function
ST (d) assigns an equal high trustworthiness of f to all
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Fig. 2. Performance of SPROUT and AC for different trust functions
and varying f . Higher value is better.

nodes within h hops of us and the standard rating of r

to the rest. Equation 3 defines the step trust function.

ST (d) = if (d < h) then f else r (3)

In our experiments we set h, the social horizon, to 5.
All three functions are expressed so that f is the rating

assigned to nodes one hop away in the social network,
the direct friends. In Figure 2 we graph both routing
algorithms under all three trust functions as a function
of the parameter f .

We see here that both the linear (LT) and exponential
(ET) trust functions perform equivalently while the step
trust function (ST) gives less performance difference for
varying f . For all trust functions SPROUT demonstrates
a clear improvement over augmented Chord for f >

0.85. For example, at f = 0.96 using the exponential
function SPROUT succeeds in routing 55% of the time,
while AC only 46%.

We also varied r, the expected fraction of good nodes
in the network. We found that for values of r < 0.75
performance remained almost constant. Above 0.75 both
algorithms steadily increased.

D. Message Load

One problem SPROUT faces is uneven load distri-
bution due to the widely varying social connectivity of
the nodes. Peers with more social links are expected to
forward messages for friends at a higher rate than weakly
socially connected peers. To study this issue we measure
the number of messages forwarded by each node over all
1,000,000 paths for both SPROUT(1,0.5) and augmented
Chord. The resulting load on each node, in decreasing
order, is given by the first two curves in Figure 3. The
load is calculated as the fraction of all messages a node
participated in routing.
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The highest loaded node in the SPROUT experiment
was very heavily loaded in comparison to AC (4% vs
0.75%). As expected, a peer’s social degree is propor-
tional to its load, with the most connected peers forward-
ing the most messages. Though the top 200 nodes suffer
substantially more load with SPROUT than AC, the
remaining nodes report equal or less load. Because the
average path length for SPROUT is slightly higher than
for AC, the total load is greater in the SPROUT scenario.
Yet the median load is slightly lower for SPROUT,
further indicating an imbalanced load distribution.

To analyze the importance of the highly connected
nodes we removed the social links from the top 10
most connected nodes, but kept their regular Chord
links and reran the experiment. As the third curve in
Figure 3 shows, the load has lowered for the most
heavily weighted nodes, yet remains well above AC.
Surprisingly the reliability was barely affected, dropping
by 2% to 0.4569. If highly connected nodes were to
stop forwarding for friends due to too much traffic, the
load would shift to other nodes and the overall system
performance would not be greatly affected.

Instead of reacting to high load, nodes may wish to
only provide a limited number of social links for routing
from the start. We limited all nodes to using only at most
20 social links for SPROUT. As we can see from the
Limit 20 curve in Figure 3, the load on the highly-loaded
peers (excluding the most loaded peer) has fallen further,
but not significantly from the No Top 10 scenario. The
average path reliability has dropped only an additional
1.5% to 0.4500.

In the end, it is the system architect who must decide



whether the load skew is acceptable. For weakly con-
nected homogeneous systems, fair load distribution may
be critical. For other systems, improved reliability may
be more important. In fact, one could take advantage of
this skew. Adding one highly-connected large-capacity
node to the network would increase reliability while
significantly decreasing all other nodes’ load.

V. RELATED AND FUTURE WORK

In [1], Castro et al propose using stricter network iden-
tifier assignment and density checks to detect misrouting
attacks in DHTs. They suggest using constrained routing
tables and redundant routing to circumvent malicious
nodes and provide more secure routing. SPROUT is
complementary to their approach, simply increasing the
probability that the message will be routed correctly
the first time. One technique of theirs that would be
especially useful in our system was their route failure test
based on measuring the density of network ids around
oneself and the purported destination. Not only can this
technique be used to determine when a route has failed,
but it can be used to evaluate the trustworthiness of a
node’s sequential neighbors by comparing local density
to that at random locations in idspace or around friends.

One open question is whether node ids can be assigned
more intelligently to improve trustworthiness. That
is, if identifiers were assigned to nodes based on the
current ids of their connected friends, what algorithm or
distribution for id assignment would optimize our ability
to route over social links?

We would like to evaluate SPROUT in a system using
replication. To illustrate, assume we use k replicas, and
node A attempts to insert an item in the DHT and
B searches for that item’s key. If a message has an
expected probability p of reaching its destination, then
the probability of B discovering A’s item is 1−(1−p2)k.
Using the values in Table I for p and k = 3, SPROUT
would succeed 52% of the time compared to only 35%
for AC.

Users may be willing to declare more friends if it
would improve their performance. How many social
links would each user need to maintain to reach a target
average path rating?

With few modifications our model can be used to
evaluate other issues, such as Quality of Service. If
peers prioritized message forwarding based on service
agreements and/or social connections we may want to
use latency to compare routing algorithms. Using func-
tions that give expected delay at each node in place
of trust functions, and using an additive, instead of

multiplicative, path rating function, we could express
this appropriately. In [6] we explore this and other issues
and demonstrate that SPROUT performs even better with
respect to Chord in such systems.

VI. CONCLUSION

We have presented a method for leveraging the trust
relationships gained by marrying a peer-to-peer system
with a social network, and applied it to the problem
of mitigating misrouting attacks. We described a model
for evaluating routing algorithms is such a system and
proposed SPROUT, demonstrating how it can improve
successful routing in a system where a large fraction of
the nodes are malicious.
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