Symphony

Distributed Hashing In A Small World

Paper by Gurmeet Manku, Mayank Bawa, and Prabhakar Raghavan (2003)

Presentation by Andrew Berns

What is Symphony?

- P2P Distributed Hashing Protocol
- O(1) links per node, O(log²n) routing
- Combines several ideas:
 - DHT
 - Kleinberg's Small World model
 - Other improvments

Symphony DHT

• Ring topology

• Each node chooses an ID from [0,1)

 Each object is hashed to a m-bit key K, and is located at the node with lowest ID greater than K / 2^m

Kleinberg's Small World and Symphony

- Like in Kleinberg's Small World, each node contains *k long distance links (k is not fixed)*
 - Chosen using a harmonic distribution PDF:

Estimating system size

- For the PDF, knowledge of the system size is important
 - Can be done using a central server
 - Decentralized method is to use estimation protocol:

$$\frac{S}{X_s}$$

Long Distance Links

- Number of incoming links bounded by 2k
- If a chosen long distance link is over capacity, try to find another one a bounded number of times

Using these long distance links results in O(1/k log² n) routing!

What about dynamic networks?

- Joining a network:
 - Find an existing member
 - Select an ID
 - Locate two neighbors, using them to estimate the number of nodes in the system
 - Select long distance links

Requires looking up k links O(log² n)

What about dynamic networks?

- Leaving a network:
 - Snap all long distance incoming and outgoing links
 - Others will find new outgoing links
 - Neighbors establish a link between themselves

Requires updating k old incoming links O(log² n)

Symphony Protocol Review

- Ring topology with IDs in [0, 1)
- Links to immediate neighbors, as well as *k* long distance links, chosen with a harmonic distribution
- $O(1/k \log^2 n)$ routing
- $O(\log^2 n)$ joining and leaving

Practical Considerations and Improvements

• Number of long distance links

Bidirectional Routing

Lookahead

How many long distance links?

More long distance links show diminishing returns

Bidirectional Routing

 Bidirectional routing offers about a 30% improvement

Routing with Lookahead

 Using Lookahead (NoN) offers about a 40% improvement

Symphony's Benefits

- Low State Maintenance
- Fault Tolerance
- Degree vs. Latency Tradeoff
 - Support for Heterogeneous Nodes
 - Incremental Scalability
 - Flexibility

Conclusion

- Symphony uses Kleinberg's Small World idea to create an efficient P2P network
 - $O(log^2 n)$ routing
 - O(1) links
- Future work includes implementing a system with heterogeneous nodes and factoring in network proximity

References

• All figures taken from the Symphony paper:

G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hashing in a small world. *Proc. 4th USENIX Symposium on Internet Technologies and Systems (USITS)* 2003.