
22C:060 Computer Organization

MIPS Programming Handout

MIPS (Microprocessor without Interlocked Pipeline Stages) is a RISC microprocessor
architecture.

Spim is a simulator that can run assembly language programs written for the MIPS
microprocessor. The CS Department lab machines (in 301MLH and B5) have Spim already installed.
If you would like to install Spim on your PC, please refer to the section at the end of this handout.

Writing Assembly Programs Using Spim:

Program Structure:

✔ The programs are plain text files. Therefore to write assembly programs for Spim, you need
a text editor that can create text (.txt in Windows) and not binary (Word) files.
 Tip: Save your program with a “.s” extension.

✔ Programs have data declaration section which is followed by the program code section.

 Data declaration section:

✔ This is placed in the section of the program identified with the assembler directive .data.
An assembler directive is just an indication of what the programmer wants. It does not
result in any machine instructions when compiled. Assembler directives are preceded by a
dot(.) as in .data

✔ .data directs the assembler that whatever follows is the data (variables) to be used in the
program. These are stored in the data section of the program.

 Code Section:
✔ The assembler directive .text identifies the code section.
✔ The code section contains the program code. This code translates into the machine

instructions when compiled.
✔ The starting point of the code execution is identified by the label main:

How to include comments in your source code:
✔ Comments are written to the right of the # symbol.

Eg: .data # variable declarations follow this line
 .text # instructions follow this line

✔ Comments always end a line

Note: The programs written for Spim must end with a blank line

22C:060 Computer Organization

Here is a simple program that reads a number and prints the square of the number. The numbers
at the start of each line are for the sake of identifying the lines. The actual program should not have
these numbers.

1. #Program to read a number and print its square
2. .data #variable used follow this line
3. prompt1: .asciiz "Enter a number:"
4. prompt2: .asciiz "\n The square of the number you have entered is:"
5. .globl main
6. .text #program's code after this line
7.
8. main:
9. li $v0,4 #System call code for print string
10. la $a0,prompt1 #Load address of the prompt1 string
11. syscall #call OS to Print prompt1
12. li $v0,5 #System call code for read integer
13. syscall #call OS to Read integer into $v0
14. move $t1,$v0 #Move the integer into $t1
15. mul $t1,$t1,$t1 #Multiply the contents of $t1 with itself
16. li $v0,4 #System call code for print string
17. la $a0,prompt2 #Load address of the prompt2 string
18. syscall #call OS to Print prompt2
19. move $a0,$t1 #Load $a0 with the value in $t1
20. li $v0,1 #System code to print integer
21. syscall #call OS to print the value in $v0
22. end:
23. li $v0,10 #System call code to Exit
24. syscall #call OS to Exit the program
25.

Anatomy of the above program: (the step number in the following indicates the line number in the
above program)

1. The first line contains a comment stating the purpose of the program.
2. Declares the .data directive indicating that the variables that are used in the program are

declared after this line.
3. Declares prompt1 using the asciiz directive. Strings declared using asciiz directive are NULL

terminated and are of fixed length. In this case prompt1 contains "Enter a number:" plus the NULL
character appended at the end.

4. Declares prompt2 as an asciiz string which contains "\n The square of the number you have entered

is:" plus the NULL character at the end.
 Note: The directive .ascii does not NULL terminate the string unlike .asciiz.

5. Declares the .globl directive. This indicates that the symbol main is accessible to other
modules.

6. Declares the .text directive indicating that the program's code follows this line.
7. Is intentionally left blank.
8. main: is the label given to the first instruction that executes when the program is run.

 The next 3 lines(9,10,11) demonstrate how use to perform I/O using syscall. The code for the
correponding syscall operation must be loaded in $v0. These lines print the string in prompt1 on
the screen.

22C:060 Computer Organization

 The lines 12,13 cause an integer to be read into $v0.

14. Stores the value of the register $v0 in $t1.
15. Multiply the value of the number entered, which is in $t1, by itself.
16-18. Perform the system call to print the string prompt2.

 19. Load the register $a0 with the result, which is in $t1.
 20-21. Perform the system call to print the integer in $a0.
 22. Labels the next instruction with the symbol end: Such labels are useful when we would

 like to branch to another instruction.
 23-24. Perform the system call to stop the execution of the program.
 25. Is a blank line at the end of the program.

The following table lists the various system call codes and the required arguments.

Please refer to Appendix A of the textbook for further information about the MIPS
architecture.

22C:060 Computer Organization

Installing SPIM:

Microsoft Windows

1. Download the file http://www.cs.wisc.edu/~larus/SPIM/pcspim.zip and save it on your machine.

2. Unzip the file.

3. Click on the setup.exe program.

Unix, Linux, or Mac OS X

Installation is a bit more complex for a Unix or Linux system, as you need to compile the program
for your particular computer and operating system.

1. Download either the file

http://www.cs.wisc.edu/~larus/SPIM/spim.tar.Z or
http://www.cs.wisc.edu/~larus/SPIM/spim.tar.gz.

2. Decompress the file, using either the program uncompress for the first file or gzip for the
second file:
 %uncompress spim.tar.Z
or
 % gzip -d spim.tar.gz

3. Move the file spim.tar to the directory in which you want to build spim and untar it:
 %tar xf spim.tar
It will create a directory named spim7.2 (or the most recent version number).

4. The simple terminal interface is contained in the spim-7.2/spim directory and the X-
windows interfaces is in the spim-7.2/xspim directory. The other directories are described
in the README file.

5. Next, you must set the directories in which spim will be installed by editing the Makefile (the
file that contains instructions on building spim). In general, if you are installing spim and want
the windowing version (xspim), edit the file xspim/Imakefile. If you don't want xspim or are
running on a system without X-windows installed, you use the file spim/Makefile.
Set these pathnames to the appropriate locations for your system:

 EXCEPTION_DIR -- The full pathname of the directory in which to install the spimi
exception handler (exceptions.s). Use /usr/local/lib.

 BIN_DIR -- The full pathname of the directory in which spim and xspim should be installed.
Use /use/local/bin.

 MAN_DIR -- The full pathname of the directory in which the manual pages for spim and
xspim should be installed. Use /usr/local/man.
In general, the remaining parameters in a Makefile need not be changed.

6. Then, if you are using Imakefile file, change to the spim7.2/xspim directory and type:

http://www.cs.wisc.edu/~larus/SPIM/pcspim.zip
http://www.cs.wisc.edu/~larus/SPIM/spim.tar.gz
http://www.cs.wisc.edu/~larus/SPIM/spim.tar.Z

22C:060 Computer Organization

 % xmkmf
 % make
If you do not have a copy of xmkmf, you can use the Makefile in the xspim directory, but
beware that it may not work on your system because the paths to the X windows libraries
could be different.

7. If you do not have X-windows, change to the spim-7.2/spim directory, edit Makefile, and
type:
 % make

8. To run spim or xspim, the exception handler must be installed in the directory specified by
the variable EXCEPTION_DIR in the Makefile. If the file exception.s is not installed, spim and
xspim fail before they start running. You can either install this file by hand or by typing
 % make install
which also installs spim or xspim, and the manual pages in the directories that you set
(above).

9. To test that spim is correctly built, change to the spim-7.2/spim directory and type:

 % make test

and examine the output of the test. (Note: the exception handler must be installed before
running the test.)

Sources:
1. http://www.cs.wisc.edu/~larus/spim.html
2. Computer Organization and Design , David A. Patterson and John L. Hennessy 3rd edition.
3. http://logos.cs.uic.edu/366/notes/MIPS%20Quick%20Tutorial.htm

http://logos.cs.uic.edu/366/notes/MIPS Quick Tutorial.htm
http://www.cs.wisc.edu/~larus/spim.html

