
Getting Started with ARMSim#

Downloading and Installing
ARMSim# is a free ARM simulator (with assembler and linker) developed by the Department of
Computer Science at the University of Victoria. The main website for ARMSim# is hosted by
the University of Victoria:

https://connex.csc.uvic.ca/access/content/group/ARMSim/SIMWeb/index.html

To download ARMSim#, you can navigate from ARMSim#’s home page (given above), or you
can follow the link below, which takes you to the ARMSim# download web page:

https://connex.csc.uvic.ca/access/content/group/ARMSim/SIMWeb/DownloadARMSimSharp.html

Installation is simple – download the .zip file using the hyperlink from the above page, extract
the contents, and run the .msi file (for Windows) or .exe file in Mono (for Linux or Mac). Notice
that Windows users must have the .NET 3.0 framework installed. This is likely present on
most Windows installations anyway, but if not, the Downloads page for ARMSim# gives a link
to download and install it from Microsoft. Linux or Mac users must have Mono installed,
which allows .NET applications to be run in non-Windows environments.

Because of the wide variety of personal computers, we cannot provide individual technical
support for installing ARMSim#. ARMSim# is installed on the lab computers and is also
accessible through remote access with DIVMS. Remote access is done through VMWare View
client, which can be downloaded for free from the DIVMS download page:

http://www.divms.uiowa.edu/csg/download.html

Creating and Running a Program
ARMSim# is not an editor, so you will need to create and edit your ARM assembly program
with a separate text editor. Open your favorite text editor and type in the following simple
program (or another simple ARM program of your choice):

@ A simple ARM assembly program.
MOV r2, #10 @ Load the value 10 into register r2
MOV r3, #2 @ Load the value 2 into register r3
MUL r1, r2, r3 @ Compute r2*r3 and store in r1 (10*2 = 20)
MOV r0, #1 @ Load 1 into register r0 (stdout handle)
SWI 0x6b @ Print integer in register r1 to stdout
SWI 0x11 @ Stop program execution

Do not worry if some of these instructions are unfamiliar at the moment, they will be covered
in time. Save your program as example1.s – note the ‘.s’ file extension is required in order for
ARMSim# to read your file. Once you have saved your ARM program, you need to load it into
ARMSim#. Open the ARMSim# program, select ‘File -> Load’ from the menu, and select your
example1.s file. It should open your program and make sure it is without syntactic errors.
Your screen will look like the one below.

On the left side of the screen, the registers for the simulated ARM processor are displayed.
The source code window is in the center, while the console window is at the bottom.

There are three options for running (simulating) your assembly language program – run, step
into, and step over. The two that will likely be of most use (and their toolbar icons) are (i) run
() and (ii) step into (). Run (keyboard shortcut F5) will run your assembly language program
from start to finish, while step into (keyboard shortcut F11) will execute one instruction at a
time, allowing you to see how each instruction is modifying the state. Press “Step Into”, and
you should see a screen like the one below.

On the left hand side, you will see that the registers that have been changed by the executed
instruction are red. In the source code window, you will notice that the highlighted blue line
is now the next instruction – is the instruction pointed to by the program counter, and will be
executed next. Try stepping through the remainder of the simple program, verifying that the
registers are changing as expected.

