How does an assembler work?

In a two-pass assembler

PASS 1: Symbol table generation
PASS 2: Code generation

Illustration of the two passes (follow the class lecture)

```
.data
L1: .word 0x2345  # some arbitrary value
L2: .word 0x3366  # some arbitrary value
Res: .space 4
.text
.globl main
main: lw $t0, L1($0)  # load the first value
     lw $t1, L2($0)  # load the second value
     and $t2, $t0, $t1  # compute the bit-by-bit AND
     or $t3, $t0, $t1  # compute the bit-by-bit OR
     sw $t3, Res($0)  # store result at location in memory
     li $v0, 10  # code for program end
     syscall
```
Other architectures

Not all processors are like MIPS.

Example. Accumulator-based machines

A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load x</td>
<td># into accumulator from memory</td>
</tr>
<tr>
<td>Add y</td>
<td># add y from memory to the acc</td>
</tr>
<tr>
<td>Store z</td>
<td># store acc to memory as z</td>
</tr>
</tbody>
</table>

Can we have an instruction like

```
add z, x, y  # z := x + y, (x, y, z in memory)
```

For some machines, YES, but not in MIPS! What are the advantages and disadvantages of such an instruction?
Load-store machines

MIPS is a **load-store architecture**. Only load and store instructions access the memory, all other instructions use registers as operands. What is the motivation?

Register access is much faster than memory access, so the program will run faster.

Reduced Instruction Set Computers (RISC)

- The instruction set has only a small number of frequently used instructions. This lowers processor cost, without much impact on performance.
- All instructions have the same length.
- Load-store architecture.

Non-RISC machines are called CISC (Complex Instruction Set Computer). Example: Pentium
Another classification

3-address add r1, r2, r3 \((r1 \leftarrow r2 + r3) \)
2-address add r1, r2 \((r1 \leftarrow r1 + r2) \)
1-address add r1 (to the accumulator)
0-address or stack machines (see below)

Example of stack architecture

Consider evaluating \(z = x \times (y + z) \)

Push x

Push y

Push z

Add

Multiply

Pop z
How to represent negative integers? The most widely used convention is 2’s complement representation.

\[+14 = 0,1110 \]
\[-14 = 1,0010 \]

Largest integer represented using n-bits is \(+ (2^{n-1} - 1) \)

Smallest integer represented using n-bits is \(- 2^{n-1} \)

So, using 4-bits (that includes 1 sign bit),

the largest integer is 0,111 (=7), and
the smallest integer is 1,000 (= -8)

Review binary-to decimal and binary-to-hex conversions.
Review BCD (Binary Coded Decimal) and ASCII codes.
How to represent fractions?
Overflow

\[
\begin{align*}
+12 &= 0, 1100 & +12 &= 0, 1100 \\
+2 &= 0, 0010 & +7 &= 0, 0111 \\
\text{add} &= 0 & 0 \\
+14 &= 0, 1110 & \text{?} &= 1, 0011 (\text{WRONG})
\end{align*}
\]

Addition of a positive and a negative number does not lead to overflow. **How to detect overflow?** Here is a clue.

\[
\begin{align*}
0 & \oplus 0 = 0 (OK) & 0 & \oplus 1 = 1 (\text{NOT OK}) \\
+12 &= 0, 1100 & +12 &= 0, 1100 \\
+2 &= 0, 0010 & +7 &= 0, 0111 \\
\text{add} &= 0 & 0 \\
+14 &= 0, 1110 & \text{?} &= 1, 0011 (\text{WRONG})
\end{align*}
\]
The following sequence of MIPS instructions can detect overflow in signed addition of $t1$ and $t2$:

```
addu $t0, $t1, $t2  # add unsigned
xor $t3, $t1, $t2  # check if signs differ
slt $t3, $t3, $zero  # $t3=1 if signs differ
bne $t3, $zero, no_overflow
xor $t3, $t0, $t1  # sum sign = operand sign?
slt $t3, $t3, $zero  # if not, then $t3=1
bne $t3, $zero, overflow
no_overflow:
  ...
  ...
overflow:
  <Do something to handle overflow>
```