
Cache Memory

Processor Memory

Main memory is slow. Cache is a small high-

speed memory that creates the illusion of a fast

main memory. Stores data from some

frequently used addresses (of main memory).

Cache hit Data found in cache. Results in data

transfer at maximum speed.

Cache miss Data not found in cache. Processor

loads data from M and copies into cache. This

results in extra delay, called miss penalty.

Hit ratio = percentage of memory accesses

satisfied by the cache.

Miss ratio = 1 - hit ratio

Cache

Bus

Cache Line

Cache is partitioned into lines (also called

blocks). Each line has 4-64 bytes in it. During

data transfer, a whole line is read or written.

Each line has a tag that indicates the address in

M from which the line has been copied.

Index Data

0 DEF

1 PQR

2 ABC

3 XYZ

Cache Main Memory

Cache hit is detected through an associative

search of all the tags. Associative search

provides a fast response to the query:

“Does this key match with any of the tags?”

Data is read only if a match is found.

Index Tag Data

0 2 ABC

1 0 DEF

Types of Cache

1. Fully Associative

2. Direct Mapped

3. Set Associative

Fully Associative Cache

 tag data

M-addr

 key

 C M

“No restriction on mapping from M to C.”

Associative search of tags is expensive.

Feasible for very small size caches only.

The secret of success

Program locality.

Cache line replacement

To fetch a new line after a miss, an existing line

must be replaced. Two common policies for

identifying the victim block are

• LRU (Least Recently Used)

• Random

Estimating Average Memory Access Time

Average memory access time =

Hit time + Miss rate x Miss penalty

Assume that

Hit time = 5 ns

Miss rate = 10%

Miss penalty = 100 ns.

The average memory access time = 15 ns.

Better performance at a cheaper price.

Direct-Mapped Cache

A given memory block can be mapped into one and

only cache line. Here is an example of mapping

Cache line Main memory block

0 0, 8, 16, 24, … 8n

1 1, 9, 17. 25, … 8n+1

2 2, 10, 18, 26, … 8n+2

3 3, 11, 19, 27, … 8n+3

Advantage

No need of expensive associative search!

Disadvantage

Miss rate may go up due to possible increase of

mapping conflicts.

Set-Associative Cache

 C M

set 0

set 1

Set 3

Two-way Set-associative cache

N-way set-associative cache

Each M-block can now be mapped into any one

of a set of N C-blocks. The sets are predefined.

Let there be K blocks in the cache. Then

N = 1 Direct-mapped cache

N = K Fully associative cache

Most commercial cache have N= 2, 4, or 8.

Cheaper than a fully associative cache.

Lower miss ratio than a direct mapped cache.

But direct-mapped cache is the fastest.

Address translation: an example

Main memory size = 2 KB

Block size = 8 bytes

Cache size = 64 bytes

Set size = 2

No. of sets in cache = 4

 No of sets = 4 = 22 Block size = 8 = 23

 6 2 3

 Memory address

To locate an M-block in cache, check the tags

in the set S = (M-block) mod (number of

sets) i.e. the index field.

 Tag index offset

Specification of a cache memory

Block size 4-64 byte

Hit time 1-2 cycle

Miss penalty

 Access

 Transfer

8-32 cycles

6-10 cycles

2-22 cycles

Miss rate 1-20%

Cache size

 L1

 L2

8KB-64KB

128KB-2 MB

Cache speed

 L1

 L2*

0.5 ns (8 GB/sec)

0.75 ns (6 GB/sec)

What happens to the cache during a write

operation?

Writing into Cache
Case 1. Write hit

 X (store X: X is in C)

Write through Write back

 Write into C & M Write into C only. Update M

 only when discarding the block

 containing x

Q1. Isn’t write-through inefficient?

 Not all cache accesses are for write.

Q2. What about data consistency in write-back cache?

 If M is not shared, then who cares?

Most implementations of write through use a Write Buffer.

How does it work?

x
x

Case 2. Write miss

 X (Store X, X is NOT in C)

Write allocate Write around

 Allocate a C-block to X. Write directly into

 Load the block containing X bypassing C

 X from M to C.

 Then write into X in C.

 .

?
x

A state-of-the-art memory hierarchy: multilevel cache

 L1 L2

 0.5 ns* 0.75 ns* 50 ns* 1 ms
 32kB+32KB 512KB-2 MB 2GB-8GB 1 TB

Reading Operation

• Hit in L1.

• Miss in L1, hit in L2, copy from L2.

• Miss in L1, miss in L2, copy from M.

Write Hit

• Write through: Write in L1, L2, M.

• Write back

Write in L1 only. Update L2 when

discarding an L1 block. Update M

when discarding a L2 block.

Write Miss

Write-allocate or write-around

 M I

D
L3
 ?

Instruction
cache

Data cache

Inclusion Property

 L1 L2

In a consistent state,

• Every valid L1 block can also be found in L2.

• Every valid L2 block can also be found in M.

Average memory access time =

(Hit time)L1 + (Miss rate)L1 x (Miss penalty)L1

(Miss penalty)L1 = (Hit time)L2 + (Miss rate) L2 x

 (Miss penalty)L2

Performance improves with additional level(s) of

cache if we can afford the cost.

 P

 M
I D

Optimal Size of Cache Blocks

 Tav
Miss Miss Avg.

Penalty Rate Mem
 Access

 Time

 Block size Block size Block size

Large block size supports program locality and

reduces the miss rate.

But the miss penalty grows linearly, since more

bytes are copied from M to C after a miss.

Tav = Hit time + Miss rate x Miss penalty.

The optimal block size is 8-64 bytes. Usually, I-

cache has a higher hit ratio than D-cache. Why?

