
Sequential Circuits
The output depends not only on the current inputs, but

also on the past values of the inputs. This is how a digital

circuit remembers data. Let us see how a single bit is

stored.

 R Q

 An SR Latch

 S Q

R = Reset, S= Set

S R Q Q Comment

0 0

1 0

0 1

1 1

0/1 1/0

1 0

0 1

0 0

Old state continues

Set state

Reset state

Illegal inputs

A clocked D-latch

 Clock C

 Q

 D Q’ (not Q)

Clock is the enabler. If C=0, Q remains unchanged.

When C=1, then Q acquires the value of D. We will use it

as a building block of sequential circuits.

There are some shortcomings of this simple circuit. An

edge-triggered circuit (or a master-slave circuit) solves

this problem

D Q

D-latch

C Q

Master-Slave D flip-flop

 D Q

 Clock

 Q

Internal details shown above

 Clock pulse Abstract view

The output Q acquires the value of the input D, only when

one complete clock pulse is applied to the clock input.

D Q

D-latch

C Q

D Q

D-latch

C Q

D Q

Clock

Register

A 8-bit register is an array of 8 D-flip-flops.

 Data input

write

Data out

 Abstract view of a register

D Q

D- F/F

C Q

D Q

D-F/F

C Q

D Q

D-F/F

C Q

D Q

D-F/F

C Q

 D

 Q

 D

 Q

 D

 Q

 D

 Q

 D

 Q

 D

 Q

 D

 Q

 D

 Q

Binary counter

Counts 0, 1, 2, 3, …

 A toggle flip-flop (T) is

 a modulo-2 counter

write A 4-bit counter
 (mod-16 counter)

“1”

Observe how Q3 Q2 Q1 Q0 change when pulses are

applied to the clock input

D Q

D-F/F

C Q

 D3

 Q3

 D2

 Q2

 D1

 Q1

 D0

 Q0

 4-bit adder

State diagram of a 4-bit counter

Here state = Q3Q2Q1Q0

Recall that the program counter is a 32-bit counter

A shift register

Shift (right)

With each pulse

0
1

2

13

14

15

3

D Q

D- F/F

C Q

D Q

D-F/F

C Q

D Q

D-F/F

C Q

D Q

D-F/F

C Q

The Building Blocks

A shift register

Review how a D flip-flop works

Shift (right)

With each clock pulse on the shift line, data moves one
place to the right.

D Q

D- F/F

C Q

D Q

D-F/F

C Q

D Q

D-F/F

C Q

D Q

D-F/F

C Q

Executing r1:= r2
How to implement a simple register transfer r1:= r2?

 32-bit reg

 32

 Write

 Clock

 32-bit reg

It takes one clock pulse to complete the operation.

Q. How to swap the contents of R1, R2?

R2

R1

Computer Arithmetic in ALU

Adding two registers: Executing r1:= r1+r2

 32-bit reg

 32

 SUM

 32 32

 CLOCK

 32-bit reg Write

It requires only one clock pulse to complete the

operation.

R2

R1

32-bit
Adder

Hardware Multiplication

By now, you know all the building blocks.

 1 0 0 1

 1 0 1 0

 0 0 0 0

 1 0 0 1 0

 0 0 0 0 0 0

 1 0 0 1 0 0 0

Product 1 0 1 1 0 1 0

The basic operations are ADD and SHIFT. Now let

us see how it is implemented by hardware.

Multiplicand

Multiplier

A Hardware Multiplier

 Shift left

 64-bit reg

 64

 Add Right shift

 LSB

 64 64

 64-bit reg Write

If LSB of Multiplier = 1 then add else skip;
Shift left multiplicand & shift right multiplier

How to implement the control unit?

0 Multiplicand

Product

64-bit
ALU Multiplier

Control

Initially 0

Occupies the
right half

1 0 1 00 0 0 0

ADD

0 0 0 0 0 0 0 0

1 0 0 1

WRITE
(ADD)

0 1 0 0

ADD

0 0 0 0 1 0 1 0

0 1 0 0

WRITE
(ADD)

SHIFT SHIFT

SHIFT SHIFT

0 0 0 1
A A

B B

M M

if LSB (M) = 1 then ADD, SHIFT LEFT A, SHIFT RIGHT M

else SHIFT LEFT A, SHIFT RIGHT M

The Control Unit for the Multiplier

LSB of multiplier M

ADD

SHIFT
CLOCK

Division
The restoring division algorithm uses the simple idea
from the elementary school days. It uses subtraction
and shift. Here is an implementation by hardware

 Shift right

 64-bit

 64

 Subtract/Add

 64 64 Left
 Shift

 64-bit Write

 Test if negative or not

How does it work?

 Divisor 0’s

Dividend / Remainder

64-bit
ALU Quotient

Control

Floating point Representation of Numbers

Floating Point representation is useful for

representing a number in a wide range: very small

to very large. It is widely used in the scientific

world. Consider, the following FP representation of

a number

 Exponent E significand F (also called mantissa)

It means (+/-) 1 . yyyyyyyyyyyy x 2xxxx

(The 1 is implied)

+/- x x x x y y y y y y y y y y y y

Sign bit

IEEE 754 single-precision (32 bits)

 Single precision

 1 8 23 bits

Largest = 1. 1 1 1 … x 2 +127 ≈ 2 x 10 +38

Smallest = 1.000 … x 2 –128 ≈ 1 x 10 -38

 These can be positive and negative, depending on s.

 (But there are exceptions too)

IEEE 754 double precision (64 bits)

1 11 bits 52 bits

 Largest = 1. 1 1 1… x 2 +1023

 Smallest = 1.000… X 2 –1024

s xxxxxxxx yyyyyyyyyyyyyyyyyyyyyyy

S exponent significand

Overflow and underflow in FP

An overflow occurs when the number if too large

to fit in the frame. An underflow occurs when

the number is too small to fit in the given frame.

How do we represent zero?

IEEE standards committee solved this by

making zero a special case: if every bit is zero

(the sign bit being irrelevant), then the

number is considered zero.

Then how do we represent 1.0?

Then how do we represent 1.0?

It should have been 1.0 x 20 (same as 0)! The way

out of this is that the interpretation of the

exponent bits is not straightforward. The

exponent of a single-precision float is "shift-

127" encoded (biased representation),

meaning that the actual exponent is (xxxxxxx

minus 127). So thankfully, we can get an exponent

of zero by storing 127.

Exponent = 11111111 (i.e. 255) means 255-127 = 128

Exponent = 01111111 (i.e. 127) means 127-127 = 0

Exponent = 00000001 (i.e. 1) means 1-127 = -126

More on Biased Representation

The consequence of shift-127

Exponent = 00000000 (reserved for 0) can no

more be used to represent the smallest number.

We forego something at the lower end of the

spectrum of representable exponents, (which could

be 2-127). That said, it seems wise, to give up the

smallest exponent instead of giving up the ability

to represent 1 or zero!

More special cases
Zero is not the only "special case" float. There are also

representations for positive and negative infinity, and for a

not-a-number (NaN) value, for results that do not make
sense (for example, non-real numbers, or the result of an

operation like infinity times zero). How do these work? A

number is infinite if every bit of the exponent is 1 (yes, we
lose another one), and is NaN if every bit of the exponent is 1

plus any mantissa bits are 1. The sign bit still distinguishes
+/-inf and +/-NaN. Here are a few sample floating point

representations:

Exponent Mantissa Object

0 0 Zero

0 Nonzero Denormalized number*

1-254 Anything +/- FP number

255 0 + / - infinity

255 Nonzero NaN like 0/0 or 0x inf

* Any non-zero number that is smaller than the smallest normal

number is a denormalized number. The production of a denormal is

sometimes called gradual underflow because it allows a calculation to

lose precision slowly when the result is small.

Floating point operations in MIPS
32 separate single precision FP registers in MIPS

f0, f1, f2, … f31,
Can also be used as 16 double precision registers
 f0, f2, f4, f30 (f0 means f0,f1 f2 means f2,f3)

These reside in a coprocessor C1 in the same package

Operations supported

add.s $f2, $f4, $f6 # f2 = f4 + f6 (single precision)
add.d $f2, $f4, $f6 # f2 = f4 + f6 (double precision)

(Also subtract, multiply, divide format are similar)

lwc1 $f1, 100($s2) # f1 = M [s2 + 100] (32-bit load)
mtc1 $t0, $f0 # f0 = t0 (move to coprocessor 1)
mfc1 $t1, $f1 # t1 = f1 (move from coprocessor 1)

Sample program

Evaluation of a Polynomial a.x2 + b.x + c

 # $f0 --- x
 # $f2 --- sum of terms

 # Evaluate the quadratic
 l.s $f2,a # sum = a
 mul.s $f2,$f2,$f0 # sum = ax

 l.s $f4,b # get b
 add.s $f2,$f2,$f4 # sum = ax + b
 mul.s $f2,$f2,$f0 # sum = (ax+b)x = ax^2 + bx

 l.s $f4,c # get c
 add.s $f2,$f2,$f4 # sum = ax^2 + bx + c

 .data
a: .float 1.0
b: .float 1.0
c: .float 1.0

Pseudo-
instruction

Floating Point Addition

Example using decimal

A = 9.999 x 10 1, B = 1.610 x 10 –1, A+B =?

Step 1. Align the smaller exponent with the

larger one.

B = 0.0161 x 101 = 0.016 x 101 (round off)

Step 2. Add significands

9.999 + 0.016 = 10.015, so A+B = 10.015 x 101

Step 3. Normalize

A+B = 1.0015 x 102

Step 4. Round off

A+B = 1.002 x 102

Exercise. Add 0.5 and –0.4375 in binary.

Floating Point Multiplication

Example using decimal

A = 1.110 x 1010, B = 9.200 x 10-5 A x B =?

Step 1. Exponent of A x B = 10 + (-5) = 5

Step 2. Multiply significands

1.110 x 9.200 = 10.212000

Step 3. Normalize the product

10.212 x 105 = 1.0212 x 106

Step 4. Round off

A x B = 1.021 x 106

Step 5. Decide the sign of A x B (+ x + = +)

So, A x B = + 1.021 x 106

