
Sequential Circuits 
The output depends not only on the current inputs, but 

also on the past values of the inputs. This is how a digital 

circuit remembers data. Let us see how a single bit is 

stored. 
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A clocked D-latch 

 

 Clock C         
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Clock is the enabler. If C=0, Q remains unchanged. 

When C=1, then Q acquires the value of D. We will use it 

as a building block of sequential circuits. 

 

 

 

 

There are some shortcomings of this simple circuit. An 

edge-triggered circuit (or a master-slave circuit) solves 

this problem  
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Master-Slave D flip-flop  
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 Clock pulse Abstract view 

The output Q acquires the value of the input D, only when 

one complete clock pulse is applied to the clock input. 
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Register 

A 8-bit register is an array of 8 D-flip-flops. 
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              Abstract view of a register 
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Binary counter 

Counts 0, 1, 2, 3, …  

 

 

      A toggle flip-flop (T) is 

      a modulo-2 counter 

 

 

 

 

write A 4-bit counter 
 (mod-16 counter) 

 

“1” 

 

 

Observe how Q3 Q2 Q1 Q0 change when pulses are 

applied to the clock input 
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State diagram of a 4-bit counter 

Here state = Q3Q2Q1Q0 

 

 

 

 

 

 

 

Recall that the program counter is a 32-bit counter 

 

A shift register 
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The Building Blocks 
 

A shift register 
 

Review how a D flip-flop works 

 

 

 

 

 

Shift (right) 

 

 

With each clock pulse on the shift line, data moves one 
place to the right. 
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Executing r1:= r2 
How to implement a simple register transfer r1:= r2? 
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It takes one clock pulse to complete the operation. 

 

 

Q. How to swap the contents of R1, R2? 
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Computer Arithmetic in ALU 

 
Adding two registers: Executing r1:= r1+r2 
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It requires only one clock pulse to complete the 

operation. 
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Hardware Multiplication  

 

By now, you know all the building blocks. 

 

    1 0 0 1 

    1 0 1 0 

    0 0 0 0 

   1 0 0 1 0 
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 1 0 0 1 0 0 0 

Product 1 0 1 1 0 1 0 
 

 

The basic operations are ADD and SHIFT. Now let 

us see how it is implemented by hardware.  
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A Hardware Multiplier 
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        64-bit reg                                             Write 
  
 
If LSB of Multiplier = 1 then add else skip; 
Shift left multiplicand & shift right multiplier 

How to implement the control unit? 
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The Control Unit for the Multiplier 
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Division 
The restoring division algorithm uses the simple idea 
from the elementary school days. It uses subtraction 
and shift. Here is an implementation by hardware  
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Floating point Representation of Numbers 

 

Floating Point representation is useful for 

representing a number in a wide range: very small 

to very large. It is widely used in the scientific 

world. Consider, the following FP representation of 

a number 

 

  Exponent E significand F (also called mantissa) 

 

 

 

 

It means (+/-) 1 . yyyyyyyyyyyy x 2xxxx 

(The 1 is implied) 
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Sign bit 



IEEE 754 single-precision (32 bits) 

 

         Single precision 

     1  8   23 bits 

Largest = 1. 1 1 1 …  x  2 +127  ≈ 2 x 10 +38 

Smallest = 1.000 … x 2 –128 ≈ 1  x 10 -38 

 These can be positive and negative, depending on s. 

 (But there are exceptions too) 

 

IEEE 754 double precision (64 bits) 

 

 

 

1 11 bits    52 bits 

 Largest =  1. 1 1 1… x 2 +1023 

 Smallest = 1.000… X 2 –1024 

s  xxxxxxxx  yyyyyyyyyyyyyyyyyyyyyyy 

 

S exponent   significand 
 



 

Overflow and underflow in FP 

 

An overflow occurs when the number if too large 

to fit in the frame. An underflow occurs when 

the number is too small to fit in the given frame. 

 

How do we represent zero?  
 

IEEE standards committee solved this by 

making zero a special case: if every bit is zero 

(the sign bit being irrelevant), then the 

number is considered zero. 

 

Then how do we represent 1.0?  



Then how do we represent 1.0?  
 
It should have been 1.0 x 20 (same as 0)! The way 

out of this is that the interpretation of the 

exponent bits is not straightforward. The 

exponent of a single-precision float is "shift-

127" encoded (biased representation), 

meaning that the actual exponent is (xxxxxxx 

minus 127). So thankfully, we can get an exponent 

of zero by storing 127.  

 

Exponent = 11111111 (i.e. 255) means 255-127 = 128 

Exponent = 01111111 (i.e. 127) means 127-127 = 0 

Exponent = 00000001 (i.e. 1) means 1-127 = -126 

 

 

 



More on Biased Representation 

The consequence of shift-127 

 

Exponent = 00000000 (reserved for 0) can no 

more be used to represent the smallest number. 

We forego something at the lower end of the 

spectrum of representable exponents, (which could 

be 2-127). That said, it seems wise, to give up the 

smallest exponent instead of giving up the ability 

to represent 1 or zero! 



More special cases 
Zero is not the only "special case" float. There are also 

representations for positive and negative infinity, and for a 

not-a-number (NaN) value, for results that do not make 
sense (for example, non-real numbers, or the result of an 

operation like infinity times zero). How do these work? A 

number is infinite if every bit of the exponent is 1 (yes, we 
lose another one), and is NaN if every bit of the exponent is 1 

plus any mantissa bits are 1. The sign bit still distinguishes 
+/-inf and +/-NaN. Here are a few sample floating point 

representations: 

 

Exponent Mantissa Object 

0 0 Zero 

0 Nonzero Denormalized number* 

1-254 Anything +/- FP number 

255 0 + / -  infinity 

255 Nonzero NaN like 0/0 or 0x inf 

 
* Any non-zero number that is smaller than the smallest normal 

number is a denormalized number. The production of a denormal is 

sometimes called gradual underflow because it allows a calculation to 

lose precision slowly when the result is small.



 

Floating point operations in MIPS 
32 separate single precision FP registers in MIPS  

f0, f1, f2, … f31, 
Can also be used as 16 double precision registers 
 f0, f2, f4, f30 (f0 means f0,f1 f2 means f2,f3) 
 
These reside in a coprocessor C1 in the same package 
 
Operations supported 
 
add.s  $f2, $f4, $f6 # f2 = f4 + f6 (single precision) 
add.d  $f2, $f4, $f6 # f2 = f4 + f6 (double precision)  
 
(Also subtract, multiply, divide format are similar)  
 
lwc1  $f1, 100($s2) # f1 = M [s2 + 100]  (32-bit load) 
mtc1  $t0, $f0  # f0 = t0 (move to coprocessor 1) 
mfc1  $t1, $f1  # t1 = f1 (move from coprocessor 1) 
 



Sample program  

Evaluation of a Polynomial a.x2 + b.x + c 
 
 
 
         # $f0 --- x 
         # $f2 --- sum of terms 
        . . . . .  
         
         # Evaluate the quadratic 
         l.s       $f2,a                # sum = a 
         mul.s    $f2,$f2,$f0         # sum = ax 
         
         l.s       $f4,b              # get b 
         add.s    $f2,$f2,$f4        # sum = ax + b 
         mul.s    $f2,$f2,$f0          # sum = (ax+b)x = ax^2 + bx 
         
         l.s       $f4,c                # get c 
         add.s   $f2,$f2,$f4         # sum = ax^2 + bx + c 
        . . . . . . 
 
         .data 
a:      .float  1.0 
b:     .float  1.0 
c:      .float  1.0 
 
 
 

 

 

Pseudo-
instruction 



Floating Point Addition 

 

Example using decimal 

A = 9.999 x 10 1, B = 1.610 x 10 –1, A+B =? 

 

Step 1. Align the smaller exponent with the 

larger one. 

B = 0.0161 x 101 = 0.016 x 101 (round off) 

Step 2. Add significands 

9.999 + 0.016 = 10.015, so A+B = 10.015 x 101   

Step 3. Normalize 

A+B = 1.0015 x 102 

Step 4. Round off 

A+B = 1.002 x 102 

 

Exercise.  Add 0.5 and –0.4375 in binary. 



Floating Point Multiplication 

 

Example using decimal 

A = 1.110 x 1010, B = 9.200 x 10-5 A x B =? 

 

Step 1. Exponent of A x B = 10 + (-5) = 5 

Step 2. Multiply significands 

1.110 x 9.200 = 10.212000 

Step 3. Normalize the product 

10.212 x 105 = 1.0212 x 106 

Step 4. Round off 

A x B = 1.021 x 106 

Step 5. Decide the sign of A x B (+ x + = +) 

 

So, A x B = + 1.021 x 106 
 

 


