
How does an assembler work?

In a two-pass assembler

PASS 1: Symbol table generation

PASS 2: Code generation

Illustration of the two passes

 .data

L1: .word 0x2345 # some arbitrary value

L2: .word 0x3366 # some arbitrary value

Res: .space 4

 .text

 .globl main

main: lw $t0, L1($0) #load the first value

 lw $t1, L2($0) # load the second value

 and $t2, $t0, $t1 # compute the bit-by-bit AND

 or $t3, $t0, $t1 # compute the bit-by-bit OR

 sw $t3, Res($0) # store result at location in memory

 li $v0, 10 # code for program end

 syscall

First, a symbol table is formed. It starts

from a specified address (say 4000)

Pass 1. Symbol Table generation

Symbol Address Comments

L1

L2

Res

main

4000

4004

4008

4012

Takes 4 bytes

Takes 4 bytes

Takes 4 bytes

Program starts from here

Pass 2. Code generation

Address Content Comment

4000

4004

4008

4012

4016

… …

Ox2345

Use Ox3366 for L2

????

Binary for lw $t0, L1($0)

Binary of lw $t1, L2($0)

… … … …

Content of L1

Content of L2

4 byte reserved

1st instruction

2nd instruction

… …

This is the object file

In what language will the compiler be written?

Loaders and Linkers

The linker stitches together independently

assembled machine language programs by

patching both internal and external

references. It produces an executable file.

The loader reads the executable file headers,

determines the sizes of the text and data

segments, makes room in the main memory to

accommodate them, and initializes all

registers.

Now the program is ready to run.

Other architectures

Not all processors are like MIPS.
Example. Accumulator-based machines

A single register, called the accumulator, stores the

operand before the operation, and stores the result

after the operation.

Load x # into accumulator from memory

Add y # add y from memory to the acc

Store z # store acc to memory as z

Can we have an instruction like

add z, x, y # z:= x + y, (x, y, z in memory) ?

For some machines, YES, but not in MIPS! What are the

advantages and disadvantages of such an instruction?

Load-store machines
MIPS is a load-store architecture. Only load and store

instructions access the memory, all other instructions use

registers as operands. What is the motivation?

Register access is much faster than memory access, so

the program will run faster.

Reduced Instruction Set Computers (RISC)

• The instruction set has only a small number of

frequently used instructions. This lowers processor

cost, without much impact on performance.

• All instructions have the same length.

• Load-store architecture.

Non-RISC machines are called CISC (Complex Instruction

Set Computer). Example: Pentium

Another classification

3-address add r1, r2, r3 (r1 ← r2 + r3)

2-address add r1, r2 (r1 ← r1 + r2)

1-address add r1 (to the accumulator)

0-address or stack machines (see below)

Example of stack architecture

Consider evaluating f = x * (y + z)

Push x

Push y

Push z

Add

Multiply

Pop f

x x

y

z

x

y+z

x * (y+z)

Computer Arithmetic: Dealing with overflow

How to represent negative integers? The most widely

used convention is 2’s complement representation.

+14 = 0, 1 1 1 0

-14 = 1, 0 0 1 0

Largest integer represented using n-bits is + (2n-1 – 1)

Smallest integer represented using n-bits is - 2n-1

So, using 4-bits (that includes 1 sign bit)

 the largest integer is 0,111 (=7), and

 the smallest integer is 1,000 (= -8)

Review binary-to decimal and binary-to-hex conversions.

Review BCD (Binary Coded Decimal) and ASCII codes.

How to represent fractions?

Overflow

+12 = 0, 1 1 0 0 +12 = 0, 1 1 0 0

+2 = 0, 0 0 1 0 +7 = 0, 0 1 1 1

add add

+14 = 0, 1 1 1 0 ? = 1, 0 0 1 1 (WRONG)

Addition of a positive and a negative number does not

lead to overflow. How to detect overflow? Here is a clue.

 0 0 0 1

+12 = 0, 1 1 0 0 +12 = 0, 1 1 0 0

+2 = 0, 0 0 1 0 +7 = 0, 0 1 1 1

add add

+14 = 0, 1 1 1 0 ? = 1, 0 0 1 1 (WRONG)

The following sequence of MIPS instructions can detect

overflow in signed addition of $t1 and $t2:

addu $t0, $t1, $t2 # add unsigned

xor $t3, $t1, $t2 # check if signs differ

slt $t3, $t3, $zero # $t3=1 if signs differ

bne $t3, $zero, no_overflow

xor $t3, $t0, $t1 # sum sign = operand sign?

slt $t3, $t3, $zero # if not, then $t3=1

bne $t3, $zero, overflow

no_overflow:

. . .

. . .

overflow:

<Do something to handle overflow>

Exception Handling

P

timeout

keyboard needs attention

printer out of paper

overflow

divide-by-0
disk error

security
violation

mouse click

There are different levels of interrupt

The Basics of Exception Handling

MIPS
Processor

Co-processor
C0

Co-processor
C1

Handles
Exception

Handles Floating
Point Arithmetic

Interrupts

 Initiated outside the instruction stream

 Arrive asynchronously (at no specific time),

 Examples:

o I/O device status change

o I/O device error condition

Traps occur due to something in instruction stream.

 Examples:

o Unaligned address error or undefined instruction

o Arithmetic overflow

o System call

Different machines classify them in different ways.

When we use the machine to run a program, we operate in

the user mode.

User
Mode

Kernel
Mode

Also called
Supervisor

Mode

An exception takes away control from the user and

transfers it to the supervisor (i.e. the operating system).

The processor is now in the kernel mode. The supervisor

determines how the exception should be handled.

(Think of the various reasons an exception can occur).

An exception triggers an unscheduled procedure call.

Inside Coprocessor C0
Coprocessor C0 has a cause register (Register 13) that

contains a 5-bit code to identify the cause of exception

(Bits 15-10: Pending Interrupts (not yet serviced)

CAUSE REGISTER

[Exception Code determines what caused the exception

like 0 means I/O interrupt

 12 means arithmetic overflow etc]

The MIPS instruction that causes an exception sets the

exception code. It then switches to the kernel mode

(designated by a bit in the status register of C0, register

12) and transfers control to a predefined address to

invoke a routine (exception handler, which starts from

0x80000080 for MIPS) for handling the exception.

STATUS REGISTER (Register 12)

 15-8 1 0

Interrupts can be disabled if you don’t want

the program to be disturbed.

 Bit 0 = 0 means interrupt is disabled, and

 Bit 0 = 1 means interrupts are enabled.

Bits 15-8 mask interrupts at specific levels (what is this?)

Exception Program Counter (EPC) saves the return

address of the main program when an interrupt occurs

(you don’t have the luxury to plan ahead and use a JAL

instruction, since interrupts can happen at any time – it is

not a planned event. So you can’t use ra or r31 for this.

 Interrupt Mask

Interrupt
Enable

Kernel/Use
r

Special instructions mfc0 (move from C0) and mtc0 (move

to C0) are used to transfer data from and to a

coprocessor register. Thus,

mfc0 $10, $13 implies r10  C0 register 13 (Cause Reg)

mtc0 $8, $13 implies r8  C0 register 13

mfc0 $r4, $14 implies r4  C)0 register 14 (EPC)

(EPC = Exception Program Counter, Reg 14 of C0)

 L: add $t0, $t1, $t2 overflow!

 Return address (L+4)

 is saved in EPC

 Next instruction

The Exception Handler determines the cause of the

exception by looking at the exception code bits. Then it

jumps to the appropriate exception handling routine.

Finally, it returns to the main program.

Exception
handler routine

Overflow
ra ← EPC; jr ra

Invalid instruction
ra ← EPC; jr ra

System Call
ra ← EPC; jr ra

Memory

Visualizing Exception Handling

interrupt / exception

Analyze the cause of exception

interrupt from keyboard?arithmetic
overflow?

main

	

Exceptions cause mostly unscheduled procedure calls.

Example	
 1:	
 Read	
 one	
 input	
 from	
 a	
 Keyboard	

Consider	
 reading	
 a	
 value	
 from	
 the	
 keyboard.	
 Assume	
 that	

the	
 interrupt	
 enable	
 bit	
 is	
 set	
 to	
 1.	
 The	
 first	
 line,	
 ".text	

0x80000080"	
 places	
 the	
 code	
 explicitly	
 at	
 the	
 memory	

location	
 where	
 the	
 interrupt	
 service	
 routine	
 is	
 called.	

.text	
 	
 	
 0x80000080	

	
 	
 mfc0	
 $k0,	
 $13	
 	
 #	
 $k0	
 =	
 $Cause;	

	
 	
 mfc0	
 $k1,	
 $14	
 	
 	
 #	
 $k1	
 =	
 $EPC;	

	
 	
 andi	
 $k0,	
 $k0,	
 0x003c	
 	
 #	
 $k0	
 &=	
 0x003c	
 (hex);	
 	

	
 	
 	
 	
 	
 	
 #	
 Filter	
 the	
 Exception	
 Code;	

	
 	
 bne	
 $k0,	
 $zero,	
 NotIO	
 #	
 if	
 ($k0	
 ≠	
 0)	
 go	
 to	
 NotIO	
 	

	
 	
 	
 	
 	
 	
 #	
 Exception	
 Code	
 0	
 =>	
 I/O	
 instr.	

	
 	
 sw	
 $ra,	
 save0($0)	
 	
 #	
 save0	
 =	
 $ra;	

	
 	
 jal	
 ReadByte	
 	
 	
 #	
 ReadByte();	
 (Get	
 the	
 byte).	

	
 	
 lw	
 $ra,	
 save0($0)	
 	
 #	
 $ra	
 =	
 save0;	

	
 	
 jr	
 $k1	
 	
 	
 	
 #	
 return;	

NotIO:	
 Other	
 routines	
 here	

	

Note that procedure ReadByte must save all registers

that it plans to use, and restore them later.

Example	
 2	

Simulate	
 a	
 trap	
 because	
 the	
 trap	
 condition	
 evaluates	
 true,	

control	
 jumps	
 to	
 the	
 exception	
 handler,	
 the	
 exception	

handler	
 returns	
 control	
 to	
 the	
 instruction	
 following	
 the	

one	
 that	
 triggered	
 the	
 exception,	
 then	
 the	
 program	

terminates	
 normally.	
 	

.text main:
teqi $t0,0 # trap when $t0 contains 0
li $v0, 10 # After return syscall
 # terminate normally

Trap handler in the standard MIPS32 kernel
text segment

.ktext 0x80000180

move $k0,$v0 # Save $v0 value
move $k1,$a0 # Save $a0 value
la $a0, msg # address of string to print
li $v0, 4 # Print String syscall

move $v0,$k0 # Restore $v0
move $a0,$k1 # Restore $a0
mfc0 $k0,$14 # Coprocessor 0 register $14

 # has address of the trapping
 # instruction

addi $k0,$k0,4 # point to next instruction
mtc0 $k0,$14 # Store new addr back to $14
eret # Error return; PC  $14

.kdata
msg: .asciiz "Trap generated"

