
Various branch instructions 

beq $6, $8, there (branch if equal) 

bne $6, $8, here (branch if not equal) 

j label {unconditional branch to label} 

jr $6 {branch to the address stored in $6} 

Which format do these instruction use? 

 

Instructions for comparison 

slt $1, $2, $3 (set less than) 

If r2 < r3 then r1:=1 else $r1:=0 

There is a pseudo-instruction blt $s0, $s1, label The 

assembler translates this to the following: 

slt $t0, $s0, $s1  # if $s0 < $s1 then $t0 =1 else $t0 = 0 

bne $t0, $zero, label # if $t0 ≠ 0 then goto label 



Compiling a switch statement 

switch (k) { 

 case 0: f = i + j; break;  s0: f 

 case 1: f = g + h; break;  s1: g 

 case 2: f = g – h; break;  s2: h 

 case 3: f = i – j; break;  s3: i 

}        s4: j 

        s5: k 

 

Assume, $s0-$s5 contain f, g, h, i, j, k. Let $t2 contain 4. 

 {Check if k is within the range 0-3} 

 slt $t3, $s5, $zero # if k < 0 then $t3 = 1 else $t3=0 

 bne $t3, $zero, Exit # if k < 0 then Exit 

 slt $t3, $s5, $t2  # if k < 4 then $t3 = 1 else $t3=0 

 beq $t3, $zero, Exit # if k ≥ 4 the Exit 

Exit:  

 

What next? Jump to the right case! 



 

 

 

      jumptable 

          register $t4 

 

 

 

L0   

 

L1 

 

 

 

 

 

Exit 

 

  MEMORY 

32-bit address L0 

32-bit address L1 

32-bit address L2 

32-bit address L3 

Base address 
of the 
jumptable 

f = i + j 

J Exit 

f = g+h 

j   Exit 



Here is the remainder of the program; 

 

 add $t1, $s5, $s5  # t1 = 2*k 

 add $t1, $t1, $t1  # t1 = 4*k 

 add $t1, $t1, $t4  # t1 = base address + 4*k 

 lw $t0, 0($t1)   # load the address pointed to 

       # by t1 into register t0 

 jr $t0    # jump to addr pointed by t0 

L0: add $s0, $s3, $s4  # f = i + j 

 J Exit 

L1: add $s0, $s1, $s2  # f = g+h 

 J Exit 

L2: sub $s0, $s1, $s2  # f = g-h 

 J Exit 

L3: sub $s0, $s3, $s4  # f = i - j 

Exit: <next instruction> 
 

 

 

 



The instruction formats for jump and branch 

J  10000 is represented as 

 

 

 6-bits   26 bits 

This is the J-type format of MIPS instructions. 

 

[Actually, the target address is the concatenation of the 

4 MSB’s of the PC with the 28-bit offset.] 

 

Conditional branch is represented using I-type format: 

 

bne $s0, $s1, Label  is represented as 

 

 

 6 5 5  16-bit offset 

 

Current PC + (4 * offset) determines the branch target Label 

This is called PC-relative addressing.

2    2500 

5 16 17    



Revisiting machine language of MIPS 

# starts from 80000 

 Loop: add  $t1, $s3, $s3     

   add  $t1, $t1, $t1 

   add  $t1, $t1, $s6 

   lw  $t0, 0($t1) 

   bne $t0, $s5, Exit 

   add $s3, $s3, $s4 

   j Loop 

 Exit: 

   6 5 5 5 5 6 

80000  0 19 19 9 0 32  R-type 

80004  0 9 9 9 0 32  R-type 

80008  0 9 22 9 0 32  R-type 

80012  35 9 8  0   I-type 

80016  5 8 21  2 (why?)  I-type 

80020  0 19 20 19 0 32  R-type 

80024  2   20000 (why?)  J-type 

80028 

What does 
this program 
do? 

Machine 
language 
version 



Addressing Modes 

 

What are the different ways to access an operand? 

 

• Register addressing 

Operand is in register 

add $s1, $s2, $s3 means $s1 ← $s2 + $s3 

 

• Base addressing 

Operand is in memory.  

The address is the sum of a register and a constant. 

lw $s1, 32($s3) means  $s1 ← M[s3 + 32] 

 

As special cases, you can implement 

 

Direct addressing   $s1 ← M[32] 

Indirect addressing  $s1 ← M[s3] 

Which helps implement pointers 

 



• Immediate addressing 

 The operand is a constant.  

 How can you execute $s1 ← 7? 

 

 addi $s1, $zero, 7 means $s1 ← 0 + 7 

 (add immediate, uses the I-type format) 

 

• PC-relative addressing 

 The operand address = PC + an offset 

Implements position-independent codes. A small 

offset is adequate for short loops. 

 

• Pseudo-direct addressing 

Used in the J format. The target address is the 

concatenation of the 4 MSB’s of the PC with the 28-bit 

offset. This is a minor variation of the PC-relative 

addressing format. 



Procedure Call 
  

 

      

 

 

 

 Procedure 

 

Main 

 

Typically procedure call uses a stack.  What is a stack? 

 

Question. Can’t we use a jump instruction to implement a 

procedure call? 

 



 

 

 

 

 

 

 



 

The stack 

 

Occupies a part of the main memory. In MIPS, it grows 

from high address to low address as you push data on the 

stack. Consequently, the content of the stack pointer 

($sp) decreases. 

 

 

   Low address 

    

               $sp 

                    

    Stack pointer 

                        

    

   High address      High address 

 

Item 1 

Item 2 



Use of the stack in procedure call 

Before the subroutine executes, save registers (why?).  

Jump to the subroutine using jump-and-link (jal address) 

(jal address means ra ← PC+4; PC ← address) For 

MIPS, (ra=r31) 

 

After the subroutine executes, restore the registers. 

Return from the subroutine using jr (jump register) 

(jr ra means PC ← (ra)) 

 

Example of a function call 

int leaf (int g, int h, int i, int j) 

{ 

 int f;  

 f = (g + h) – (i + j); 

 return f; 

} 

The arguments g, h, i, j are put in $a0-$a3. 

The result f will be put into $s0, and returned to $v0. 



The structure of the procedure 

Leaf: addi $sp, $sp, -12 # $sp = $sp-12, make room 

  sw $t1, 8($sp)  # save $t1 on stack 

  sw $t0, 4($sp) # save $t0 on stack 

  sw $s0, 0($sp) # save $s0 on stack 

 

The contents of  $t1, $t0, $s0 in the main program have been saved 

and can be restores later. Now we can use these registers in the 

body of the function. 

 

 add $t0, $a0, $a1  # $t0 = g + h 

 add $ t1, $a2, $a3  # $t1 = i + j 

 sub $s0, $t0, $t1   # $s0 = (g + h) – (i + j) 

 
 
 

         Pass g,h,i,j into $a1-$a3 
 
 

 

 

                 Return result f into $v0 

 
 
 

	  

Main	  

 

Procedure	  



 

Return the result into the register $v0 

 

add $v0, $s0, $zero # returns f = (g+h)-(i+j) to $v0 

 

Now restore the old values of the registers by popping 

the stack. 

 

lw $s0, 0($sp)  # restore $s0 

lw $t0, 4($sp)  # restore $t0 

lw $t1, 8($sp)  # restore $t1 

addi $sp, $sp, 12 # adjust $sp 

 

Finally, return to the main program. 

 

jr $ra   # return to caller. 



Nested subroutine call 



Handling recursive procedure calls 

Example.  Compute factorial (n) 

int fact (int n) 

{ 

 if (n < 1) return (1); 

  else return (n * fact(n-1)) 

} 

 

 (Plan) Put n in $a0. Result should be available in $v0. 

 

{Structure of the fact procedure} 

fact: subi $sp, $sp, 8         $sp 

  sw $ra, 4($sp) {why?} 

  sw $a0, 0($sp)       

           $fp 

OLD        NEW 
 

 

      $sp (current top of the stack)

a0 
 

ra 

 

 

 



  calling program    procedure fact 

 

       4000 

996       4004 

1000       

1004 

 

          4024 

 

 

  

$sp  

             a0 

        

             v0 

 

   

The growth of the stack as the recursion unfolds

…    
… 

a0 = n (3) 

jal fact (4000) 

read fact(n) from v0 

push ra 

push a0 

if n<1 then {v0=1 

Return to ra} 

a0=n-1 

jal fact (4000) 

v0=old a0* fact(n-1) 

return to old ra 

a0 = 3 

ra= 4024 

a0 = 2 

ra = 4024 
a0 = 1 

 

ra = 1004 

n=3 

result 



 

Now test if n < 1 (i.e. n = 0). In that case return 1 to $v0 

 

 slti  $t0, $a0, 1  # if n ≥ 1 then goto L1 

 beq  $t0, $zero, L1 

 addi $v0, $zero, 1  # return 1 to $v0 

 addi $sp, $sp, 8  # pop 2 items from stack 

 jr  $ra    # return  

L1: addi $a0, $a0, -1  # decrement n 

 jal  fact    # call fact with (n – 1) 

 

Now, we need to compute n * fact (n-1) 

 

 lw  $a0, 0($sp)  # restore argument n 

 lw $ra, 4($sp)  # restore return address 

 addi $sp, $sp, 8  # pop 2 items 

 mult $v0, $a0, $v0  # return n * fact(n-1) 

 jr  $ra    # return to caller 



Run time environment of a MIPS program 

 

 

       Low address 

 

        Growth of stack 

 

 

 

       High address 

Frame	  
pointer	  

Saved argument 
registers beyond  
a0-a3 

Return address 

Temporary local 
variables 

Stack pointer 



A translation hierarchy 

 

   HLL program 

   COMPILER 

   Assembly language program 

   ASSEMBLER 

   Machine language module 

   LINKER   Library routine 

   Executable machine language program 

   LOADER 

Memory 



What are Assembler directives? 

 

Instructions that are not executed, but they tell the 

assembler about how to interpret something. Here are 

some examples: 

 

  . text 

  {Program instructions here} 

   

  . data 

  {Data begins here} 

  . byte 84, 104, 101 

  . asciiz “The quick brown fox” 

  . float f1,. . . , fn 

  . word w1, . . . . wn 

  . space n {reserve n bytes of space} 



How does an assembler work? 

 

In a two-pass assembler 

 

PASS 1: Symbol table generation 

PASS 2: Code generation 
 
 

Follow the example in the class. 
 


