Various branch instructions

beq $6, $8, there (branch if equal)

bne $6, $8, here (branch if not equal)

j label {unconditional branch to label}
jr $6 {branch to the address stored in $6}

Which format do these instruction use?

Instructions for comparison

slt $1, $2, $3 (set less than)
If r2<r3 thenrl:=1lelse $r1:=0

There is a pseudo-instruction blt $s0, $s1, label The
assembler translates this to the following:

slt $10, $s0, $s1 #if $s0 < $s1 then $t0 =1 else $t0 = 0
bne $t0, $zero, label # if $10 = O then goto label

Compiling a switch statement

switch (k) {
case 0: f =i+ j; break; sO: f
case 1: f=g+h; break sl: g
case 2: f =g- h; break; s2: h
case 3: f =i~ j; break; s3ii
} s4: |

sh: k

Assume, $s0-$s5 contain f, g, h, i, j, k. Let $12 contain 4.
{Check if k is within the range 0-3}
slt $13, $s5, $zero #if k < 0 then $t3 = 1 else $t3=0
bne $13, $zero, Exit #ifk <0 then Exit
slt $13, $s5, $12 #if k < 4 then $t3 = 1 else $t3=0

beq $t3, $zero, Exit #ifk >4 the Exit
Exit:

What next? Jump to the right case!

f=1+]
LO

J Exit

f=g+h
Ly |8

j Exit
Exit

MEMORY

)
32-bit address LO
32-bit address L1 jumpTable
32-bit address L2
32-bit address L3
J

Base address
of the
jumptable

register $t4

Here is the remainder of the program;

add $t1, $s5, $s5
add $11, $11, $11
add $t1, $11, $14
lw $10, O($11)

jr $10

LO: add $s0, $s3, $s4
J Exit

L1: add $s0, $s1, $s2
J Exit

L2: sub $s0, $s1, $s2
J Exit

L3: sub $s0, $s3, $s4

Exit: <next instruction>

#t1=2%
#t1 =4*k
t1 = base address + 4%k

load the address pointed to
by t1 into register t0
jump to addr pointed by t0

#f=i+]

#f=g+h

#f=g-h

Hi=i-]

The instruction formats for jump and branch

J 10000 is represented as

2 2500

6-bits 26 bits

This is the J-type format of MIPs instructions.

[Actually, the target address is the concatenation of the

4 MSB's of the PC with the 28-bit offset.]

Conditional branch is represented using I-type format:

bne $s0, $s1, Label is represented as
5 | 16 |17
6 5 b5 16-bit offset

Current PC + (4 * offset) determines the branch target Label

This is called PC-relative addressing.

Revisiting machine lanquage of MIPS

starts from 80000

Loop: add $t1, $s3, $s3
add $11, $11, $t1
add $11, $11, $s6
lw $10, 0($11)
bne $10, $s5, Exit
add $s3, $s3, $s4

J Loop
Exit:

6 5 5 5 5 6
80000 O |19/19/9| 0 | 32 R-type
80004 O 19199 0]32 R-type
80008 O 9 |22,9| 0| 32 R-type
80012 35| 9 | 8 0 I-type
80016 5 18 |21 2 (why?) I-type
80020 0 |19/20/19|0 | 32 R-type
80024 2 20000 (why?) J-type
80028

Addressing Modes

What are the different ways to access an operand?

¢ Register addressing
Operand is in register

add $s1, $s2, $s3 means $s1 « $s2 + $s3

e Base addressing
Operand is in memory.
The address is the sum of a register and a constant.

lw $s1, 32($s3) means $s1 «— M[s3 + 32]

As special cases, you can implement

Direct addressing $s1 « M[32]
Indirect addressing $s1 «— M[s3]

Which helps implement pointers

e Immediate addressing
The operand is a constant.

How can you execute $sl « 7?

addi $s1, $zero, 7 means $s1 «— 0 +7

(add immediate, uses the I-type format)

¢ PC-relative addressing
The operand address = PC + an of fset
Implements position-independent codes. A small

offset is adequate for short loops.

e Pseudo-direct addressing

Used in the J format. The target address is the
concatenation of the 4 MSB's of the PC with the 28-bit
offset. This is a minor variation of the PC-relative

addressing format.

Procedure Call

Procedure

Main

Typically procedure call uses a stack. What is a stack?

Question. Can't we use a jump instruction to implement a

procedure call?

The stack

Occupies a part of the main memory. In MIPS, it grows

from high address to low address as you push data on the

stack. Consequently, the content of the stack pointer

($sp) decreases.

Low address ﬁ

ﬁ Item 2

$sp

Item 1

Stack pointer

High address High address

Use of the stack in procedure call

Before the subroutine executes, save registers (why?).
Jump to the subroutine using jump-and-link (jal address)
(jal address means ra < PC+4; PC < address) For

MIPS, (ra=r31)
After the subroutine executes, restore the registers.
Return from the subroutine using jr (jump register)

(jr ra means PC < (ra))

Example of a function call

int leaf (int g, int h, int i, int j)

{
int f;
f=(g+h)-(i+))
return f;

}

The arguments g, h, i, j are put in $a0-$a3.
The result f will be put into $s0, and returned to $vO.

The structure of the procedure

Leaf: addi $sp, $sp, -12 # $sp = $sp-12, make room
sw $t1, 8($sp) # save $t1 on stack
sw $10, 4($sp) # save $t0 on stack
sw $s0, 0($sp) # save $s0 on stack

The contents of $t1, $t0, $sO in the main program have been saved
and can be restores later. Now we can use these registers in the

body of the function.

add $10, $a0, $al #$t0=g+h
add $ t1, $a2, $a3 #Ot =i +]
sub $s0, $10, $t1 #%$s0=(g+h)-(i+)

Pass g,h,i,j into $al-$a3

Procedure

Main

Return result f into $vO

Return the result into the register $vO

add $v0, $s0, $zero #returns f = (g+h)-(i+]) to $v0

Now restore the old values of the registers by popping

the stack.

lw $s0, 0($sp) # restore $s0
lw $10, 4($sp) # restore $t0
lw $11, 8($sp) # restore $t1
addi $sp, $sp, 12 #adjust $sp

Finally, return to the main program.

jr $ra # return to caller.

Nested subroutine call

f(ry)=xy

pass (X, Y)

call MULT
pass (X, Y)

sub 2

jal addr1

MAIN

jal addr2

jrra

stack ptr
saves return address P

ret Y pass

131 X parameters

computes
SQRT

saves return address

return X.Y

MULT

=1

save
registers

stack ptr

<

pass

parameters

save
registers

ret
ret2 Y pass
131 X parameters

save

=1

registers

Handling recursive procedure calls

Example. Compute factorial (n)

int fact (int n)
{
if (n<1)return (1)
else return (n * fact(n-1))
}

(Plan) Put n in $a0. Result should be available in $vO.

{Structure of the fact procedure}

fact: subi $sp, $sp, 8 (— $sp
sw $ra, 4($sp) {why?} A ﬁ
sw $a0, 0($sp) S S
$fp

OLD ﬁ NEW

= $sp (current top of the stack)

calling program

gt

procedure fact

4000 push ra

996 a0 =n (3) / 4004 | push a0
1000 | Jal fact (4000) if n<1 then {vO=1
1004 read fact(n) from vO Return to ra}
\ a0=n-1
ﬂ jal fact (4000)
4024 vO=old a0* fact(n-1)
return to old ra

$sp =)

a0 = 1 =3 0

ra =4024

a0 =2

ra= 4024 result | v0

a0 =3

ra= 1004

The growth of the stack as the recursion unfolds

Now test if n< 1 (i.e. n = 0). In that case return 1 to $vO

slti $10, $a0, 1 # if n>1 then goto L1
beq $t0, $zero, L1
addi $v0, $zero, 1 # return 1 to $vO

addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # return

L1: addi $a0, $a0, -1 # decrement n
jal fact # call fact with (n-1)

Now, we need to compute n * fact (n-1)

lw $a0, 0($sp) # restore argument n
lw $ra, 4($sp) # restore return address
addi $sp, $sp, 8 # pop 2 items

mult $v0, $a0, $vO0 # return n * fact(n-1)

jr $ra # return to caller

Run time environment of a MIPS program

_ Low address
Temporary local

variables

_ Growth of stack

Saved argument
registers beyond
a0-a3

High address

A translation hierarchy

HLL program
v

COMPILER
v

Asse+mbly language program

ASSEMBLER
v

Machine language module

LINKER <—— Library routine
v

Executable machine language program

v
LOADER

Memory

What are Assembler directives?

Instructions that are not executed, but they tell the
assembler about how to interpret something. Here are

some examples:

. Text

{Program instructions here}

. data

{Data begins here}

. byte 84,104, 101

. asciiz "The quick brown fox"
. float f1,..., fn
.wordwl,....wn

. space n {reserve n bytes of space}

How does an assembler work?

In a fwo-pass assembler

PASS 1. Symbol table generation
PASS 2: Code generation

Follow the example in the class.

