
Pipelined MIPS
While a typical instruction takes 3-5 cycles (i.e.

3-5 CPI), a pipelined processor targets 1 CPI

(at least gets close to it).

It shows the rough division of responsibilities.

The buffers between stages are not shown.

Problem 1. How can the same adder perform IF and EX in cycle

3? We need an extra adder! Gradually we need to modify the data

path for the multi-cycle implementation.

Problem 2. How can we read instruction memory and data

memory in the same clock cycle? We had to return to Harvard

architecture!

Uniformity is simplicity

Speedup

The steady state throughput is determined by

the time t needed by one stage.

The length of the pipeline determines the

pipeline filling time

If there are k stages, and each stage takes t

time units, then the time needed to execute N

instructions is

 k.t + (N-1).t

Estimate the speedup when N=5000 and k=5

Hazards in a pipeline

Hazards refer to conflicts in the execution of a

pipeline. On example is the need for the same

resource (like the same adder) in two

concurrent actions. This is called structural

hazard. To avoid it, we have to replicate

resources. Here is another example:

lw $s1, 4($sp) IF ID EX MEM WB

add $s0, $s1, $s2 IF ID EX MEM WB

Notice the second instruction tries to read $s1

before the first instruction complete the load!

This is known as data hazard.

Avoiding data hazards

One solution is in insert bubbles (means

delaying certain operation in the pipeline)

lw $s1, 4($sp) IF ID EX MEM WB

add $s0, $s1, $s2 IF nop nop nop ID

Another solution may require some

modification in the datapath, which will raise

the hardware cost

Hazards slow down the instruction execution

speed.

Control hazard

sub $s1, $t1, $t2 IF ID EX MEM WB

beq $s1, $zero L IF ID EX MEM

some instruction here IF ID EX

There is no guarantee! The next instruction

has to wait until the predicate ($s1=0) is

resolved. Look at the tasks performed in the

five steps – the predicate is evaluated in the

EX step. Until then, the control unit will

insert nop (also called bubbles) in the

pipeline.

Will the correct
instruction be fetched?

The Five Cycles of MIPS

 (Instruction Fetch)

IR:= Memory[PC]; PC:= PC+4

(Instruction decode and Register fetch)

 A:= Reg[IR[25:21]], B:=Reg[IR[20:16]]

 ALUout := PC + sign-extend(IR[15:0]]

(Execute|Memory address|Branch completion)

Memory refer: ALUout:= A+ IR[15:0]

R-type (ALU): ALUout:= A op B

Branch: if A=B then PC:= ALUout

(Memory access | R-type completion)

 LW: MDR:= Memory[ALUout]

 SW: Memory[ALUout]:= B

 R-type: Reg[IR[15:11]]:= ALUout

(Write back)

 LW: Reg[[20:16]]:= MDR

sub $s1, $t1, $t2 IF ID EX MEM WB

beq $s1, $zero L IF ID EX MEM

Some instruction here IF o IF ID

An alternative approach to deal with this is for

the compiler (or the assembler) to insert NOP

instructions, or reorder the instructions.

No action
performed here

Dealing with Hazards in Pipelined Processors
Two options

 Processor

HLL Output

Program

 Control unit

1. Either the control unit can be smart, i,e. it can delay

instruction phases to avoid hazards. Processor cost

increases.

2. The compiler can be smart, i.e. produce optimized

codes either by inserting NOPs or by rearranging

instructions. The cost of the compiler goes up.

Compiler
LU ALU

Instruction Reorganization by Compiler

To avoid data hazards, the control unit can insert bubbles.

As an alternative, the compiler can use NOP instructions.

Example: Compute a: = b + c; d: = e + f

(a, b, c, d, e, f are stored in the memory)

 LW R1, b LW R1, b

 LW R2, c LW R2, c

 ADD R3, R1, R2 NOP

 SW a, R3 NOP

 LW R1, e ADD R3, R1, R2

 LW R2, f NOP

 SUB R3, R1, R2 SW a, R3

 SW d, R3 LW R1, e

 LW R2,f

 NOP

NOP

SUB R3, R1, R2

NOP

 SW d, R3

Original code Code generated by a smart compiler

Instruction Reorganization by Compiler

The compiler can further speedup by reorganizing the

instruction stream and minimizing the no of NOP’s.

Example: Compute a: = b + c; d: = e + f

 LW R1,b LW R1,b

 LW R2,c L W R2,c

 ADD R3, R1, R2 LW R4, e

 SW a, R3 LW R5, f

 LW R1, e ADD R3,R1,R2

 LW R2,f NOP

 SUB R3, R1, R2 SW a, R3

 SW d, R3 SUB R6, R5, R4

 NOP

SW d, R6

NOP

Original code Code reorganized by a smart compiler

(Control unit remains unchanged)

Note the reassignment of registers

Another example: delayed branch
 add $r1, $r2, $r3 add $r1, $r2, $r3
 beq $r2, $zero, L beq $r2, $zero, L’
 <instruction> NOP (delay slot)
 <instruction> <instruction>
L: <instruction> <instruction>
 L’: <instruction>

The compiler may try to schedule other instructions in

the delay slot for the sake of speed-up. Here is an

example:

 beq $r2, $zero, L
 add $r1, $r2, $r3
 <instruction>
 <instruction>
L: <instruction>

Note that the first two instructions have been

swapped. How does it help?

Superscalar processors
Helps execute more than one instruction per cycle.

Consider as if there are multiple pipelines. Multiple

instructions are fetched and issued in a cycle. Also

called Second Generation RISC.

Taken from Wikipedia

Instruction level parallelism
Either the compiler or the control unit must identify

which instructions can be executed in parallel.

Instruction Level Parallelism (ILP) is a key issue in

superscalar design.

