
Pipelined MIPS 
While a typical instruction takes 3-5 cycles (i.e. 

3-5 CPI), a pipelined processor targets 1 CPI 

(at least gets close to it). 

 

It shows the rough division of responsibilities. 

The buffers between stages are not shown.



 
Problem 1. How can the same adder perform IF and EX in cycle 

3? We need an extra adder! Gradually we need to modify the data 

path for the multi-cycle implementation. 

Problem 2. How can we read instruction memory and data 

memory in the same clock cycle? We had to return to Harvard 

architecture! 

 



 

Uniformity is simplicity 

 

 



Speedup 
 

The steady state throughput is determined by 

the time t needed by one stage. 

 

The length of the pipeline determines the 

pipeline filling time 

 

If there are k stages, and each stage takes t 

time units, then the time needed to execute N 

instructions is  

 

    k.t + (N-1).t 

 

Estimate the speedup when N=5000 and k=5



Hazards in a pipeline 
 

Hazards refer to conflicts in the execution of a 

pipeline. On example is the need for the same 

resource (like the same adder) in two 

concurrent actions. This is called structural 

hazard. To avoid it, we have to replicate 

resources. Here is another example: 

 

lw $s1, 4($sp)  IF ID EX MEM  WB 

add $s0, $s1, $s2  IF ID EX    MEM  WB 

 

Notice the second instruction tries to read $s1 

before the first instruction complete the load! 

This is known as data hazard. 



Avoiding data hazards 
 

One solution is in insert bubbles (means 

delaying certain operation in the pipeline) 

 

lw $s1, 4($sp)  IF ID EX MEM  WB 

add $s0, $s1, $s2  IF nop   nop  nop   ID  

 

Another solution may require some 

modification in the datapath, which will raise 

the hardware cost  

 

Hazards slow down the instruction execution 

speed. 



 

Control hazard 
 

sub $s1, $t1, $t2  IF ID EX MEM  WB 

beq $s1, $zero L   IF ID  EX    MEM   

some instruction here   IF ID    EX 

 

 
 
 
 
 
 
 
 

There is no guarantee! The next instruction 

has to wait until the predicate ($s1=0) is 

resolved. Look at the tasks performed in the 

five steps – the predicate is evaluated in the 

EX step. Until then, the control unit will 

insert nop (also called bubbles) in the 

pipeline. 

Will the correct 
instruction be fetched? 



The Five Cycles of MIPS 

 (Instruction Fetch)  

IR:= Memory[PC]; PC:= PC+4 

 

(Instruction decode and Register fetch) 

 A:= Reg[IR[25:21]], B:=Reg[IR[20:16]] 

 ALUout := PC + sign-extend(IR[15:0]] 

 

(Execute|Memory address|Branch completion) 

Memory refer: ALUout:= A+ IR[15:0] 

R-type (ALU):  ALUout:= A op B 

Branch:   if A=B then PC:= ALUout 

 

(Memory access | R-type completion) 

 LW:  MDR:= Memory[ALUout] 

 SW:  Memory[ALUout]:= B 

 R-type: Reg[IR[15:11]]:= ALUout 

 

(Write back) 

 LW:  Reg[[20:16]]:= MDR 



 

 

sub $s1, $t1, $t2 IF ID EX MEM  WB 

beq $s1, $zero L  IF ID  EX    MEM   

Some instruction here    IF   o      IF   ID  
 

 

 

 

An alternative approach to deal with this is for 

the compiler (or the assembler) to insert NOP 

instructions, or reorder the instructions. 

No action 
performed here 



 

Dealing with Hazards in Pipelined Processors 
Two options  

 

      Processor 

       

HLL            Output 

Program 

 
         Control unit 

 

1. Either the control unit can be smart, i,e. it can delay 

instruction phases to avoid hazards. Processor cost 

increases. 

 

2. The compiler can be smart, i.e. produce optimized 

codes either by inserting NOPs or by rearranging 

instructions. The cost of the compiler goes up. 
 

Compiler 
LU ALU 



Instruction Reorganization by Compiler 

To avoid data hazards, the control unit can insert bubbles. 

As an alternative, the compiler can use NOP instructions. 

 

Example: Compute a: = b + c; d: = e + f 

(a, b, c, d, e, f are stored in the memory) 

 

 LW R1, b   LW R1, b 

 LW R2, c   LW  R2, c 

 ADD R3, R1, R2  NOP 

 SW a, R3    NOP 

 LW  R1, e   ADD R3, R1, R2 

 LW  R2, f    NOP 

 SUB R3, R1, R2  SW a, R3 

 SW d, R3   LW  R1, e  

      LW  R2,f   

      NOP    

NOP   

SUB R3, R1, R2 

NOP 

      SW d, R3 

 

Original code  Code generated by a smart compiler 



Instruction Reorganization by Compiler 
 

The compiler can further speedup by reorganizing the 

instruction stream and minimizing the no of NOP’s.  

 
Example:   Compute  a: = b + c; d: = e + f  

 

 LW R1,b    LW R1,b 

 LW R2,c    L W  R2,c 

 ADD R3, R1, R2  LW  R4, e 

 SW a, R3    LW  R5, f 

 LW  R1, e   ADD R3,R1,R2 

 LW  R2,f    NOP 

 SUB R3, R1, R2  SW a, R3 

 SW d, R3   SUB R6, R5, R4 

      NOP    

SW d, R6   

NOP 

       

Original code  Code reorganized by a smart compiler 

(Control unit remains unchanged)  

    
Note the reassignment of registers 



Another example: delayed branch 
 add $r1, $r2, $r3   add $r1, $r2, $r3  
 beq $r2, $zero, L   beq $r2, $zero, L’ 
 <instruction>   NOP (delay slot) 
 <instruction>   <instruction> 
L: <instruction>   <instruction> 
      L’: <instruction> 
 
The compiler may try to schedule other instructions in 

the delay slot for the sake of speed-up. Here is an 

example: 

 
 beq $r2, $zero, L  
 add $r1, $r2, $r3    
 <instruction>    
 <instruction>    
L: <instruction>   
 
Note that the first two instructions have been 

swapped. How does it help? 



Superscalar processors 
Helps execute more than one instruction per cycle. 

Consider as if there are multiple pipelines. Multiple 

instructions are fetched and issued in a cycle. Also 

called Second Generation RISC. 

 

 
Taken from Wikipedia 

 
Instruction level parallelism 
Either the compiler or the control unit must identify 

which instructions can be executed in parallel. 

Instruction Level Parallelism (ILP) is a key issue in 

superscalar design. 


