Instructions to prepare and submit your homework

1. Explain the general plan of the program in Q. 1 using a readme file
2. Be generous about using comments to improve readability.
3. To submit, zip (or tar) all files into a single file, and drop it to ICON drop box

Question 1. (40 points) Create an exponent function: float \texttt{exp} (float \texttt{x}) that accepts an input \texttt{x} from the user, and returns \(e^x \), (using the MIPS floating point co-processor). Recall that \(e = 2.71828183... \) Use Taylor Series expansion to compute the exponential function:

\[e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^{10}}{10!} \]

(It is an infinite series, but you can stop after computing up to the 10th term)

To facilitate this, you may create two functions, \texttt{power} and \texttt{factorial}, that may have the signatures: float \texttt{power} (float \texttt{x}, int \texttt{n}) and int \texttt{factorial} (int \texttt{n}). Here, \texttt{power} (\texttt{x},\texttt{n}) would return \(x^n \) for \(n \geq 0 \) and \texttt{factorial} \(n \) will return \(n! \). For computing the factorial, you may write either a recursive program or a simple iterative program.

A helpful SPIM instruction is \texttt{cvt.s.w Fd Fs} that converts an integer in the source register \texttt{Fs} to a single precision floating-point number in the destination register \texttt{Fd}. Here is an example of its usage:

\[
\begin{align*}
m\texttt{tc1} & \$v0, \$f1 & \# \text{move to register} \ $f1 \text{ (in coprocessor C1) from register} \ $v0 \\
c\texttt{vts.w} & \$f1, \$f1 & \# \text{convert the integer in} \ $f1 \text{ to single precision floating point format} \\
d\texttt{iv.s} & \$f0, \$f0, \$f1 & \# \text{divide} \ $f0 \text{ by} \ $f1 \text{ and store the result in} \ $f0 \\
\end{align*}
\]

Here is another example of a program that computes the polynomial \(ax^2 + bx + c \)
A summary of some useful floating point instructions is available in Appendix B of your textbook.
Question 2. (10 points) Let X, Y, Z, be three D-flip-flops, each storing a single bit. Draw a circuit so that by applying a single pulse in the clock line, the following operation can be performed:

\[
\text{if } X = 0 \quad \text{then } Y := Z \quad \text{else } Z := Y
\]

Briefly explain why your circuit will work.