Multiprocessor Synchronization

Mutual exclusion using atomic swap

r.=1; X:=0 {X is the lock}
lockit: swap (r, X);

if r = 1 then goto lockit;

{critical section}

X:=0

Study the above spin-lock implementation. How to

save bus-bandwidth?

A more efficient solution using local cache

r:=1; X:=0

lockit: if X=0 then swap (r, X);
if r 0 then goto lockit;
{critical section}

X:=0

What is the maximum number of bus cycles used
when N processes enter (and exit) their critical

sections exactly once?

ON+1 +2(N-1) + 1+ 2(N-2) + 1+ ...+ 2 + 1

= N?+2N i.e O(N?

Load-Linked, Store Conditional (LL, SC)

First used by DEC Alpha for process synchronization.

¢ LL r, x loads the value of x into register r, and

saves the address x into a link register.

¢ SC r, x stores r into address x only if it is the first
store (after LL r, x). The success is reported by
returning a value (r=1). Otherwise, the store fails,

and (r=0) is returned.

Used by MIPS

Example. Implement atomic x:= x+1 using LL, SC

Initially x=0

lock: LL r, x;
r.=r+1;
SCr, x

if r1 = 0 then goto lock

Unlike the RMW instructions, there is no need to
lock the bus, yet it implements an atomic

operation

Solution to Mutual Exclusion using LL, SC

X:=0
{X is the lock, now it is unlocked}
lockit: LLr, X;
if r neq 0 then goto lockit;
r-=1,
SCr, X;
{The first successful SC grabs the lock}
if (r = 0) then goto lockit {failure} else
{Critical section}

X:=0 {Lock released}

Unlike an RMW operation, the bus is not locked for

multiple cycles, but the bandwidth is wasted.

Svnchronization in large scale microprocessors

Use exponential back off. When a process fails to
grab the lock, it will try after a time delay that will

increase exponentially after every failure.

X:=0 {This is the lock}
r3:=1 {delay stored in r3}
lockit: LL r, X;
if (r neq 0) then goto lockit end if;
r.=1.SCr, X;
if (r = 0) then goto gotit;
r3 :=r3 + r3; Pause r3 {Try after pause}
goto lockit
end if
gotit: critical section

X=0

Barrier Synchronization

—
_>

Phase 0 Phase 1 Phase 2 Phase 3

‘ ‘

Phase (i+1) does not begin until every process

completes phase i. Useful in parallel loops.

Shared var count: integer {initially = 0}
release: boolean
{lock}
if count=0
then release = false {first process}
end if
count=count+1 {lock maintains atomicity}
{unlock}
if count =N (last process)
then count: = 0; release: = true
else walit for (release = true) {spin lock}
end if

Fetch-and-Add

FA(X, v) = <Return X; X:= X+ v> {atomic operation}

Read-modify-write operation (costs 2 memory cycles}

First used in NYU Ultracomputer to implement locking
and drastically reduces memory contention in a novel

way. Now included in the instruction set of IA-64.

Example

Let there be N processes.
Each process i executes FA(X, i) = <X:= X+ >
How many memory accesses are required?

2N {Better than O(N?), but can be further improved}

Fetch-and-Add (continued)

Contention can be further reduced using combining

switches (only one RMW is enough)

i FA (x, i+j+k+I)

switch

FA (x, i+j) ¥ FA(x, k+I)

A

FA(x,i)L JFA(x,j) FA(x,k)T¢ ¢TFA(x,|)

PP P P. P

Each switch returns a value that mimics the

sequential operation

Barrier Synchronization using Fetch & Add

—
_>

Phase 0 Phase 1 Phase 2 Phase 3

‘ ‘

Phase (i+1) does not begin until every process

completes phase i.

initially count = 0, release = false
FA (count, 1);
if (count=N)

then release := true;

else wait for (release=true) do skip;

release & count re-initialized before the next phase begins

Requires at most N FA operations. Costs N cache

misses for count, and N cache misses for release.

