Multiplexor

It is a many-to-one switch, also called a selector.

Control S

$$
\begin{aligned}
& S=0, F=A \\
& S=1, F=B
\end{aligned}
$$

Specifications of the Tux

A 2-to-1 max

$$
F=\bar{S} \cdot A+S . B
$$

Exercise. Design a 4-to-1 mux.

Another design of a multiplexor

Demultiplexors

A demux is a one-to-many switch.

A 1-to-2 demux, and its specification.

So, $X=S . A$, and $Y=S . B$

Exercise. Design a 1-4 demux.

A 1-bit ALU

Understand how this circuit works.

Need to add one more input to the mux to implement slt

Converting an adder into a subtractor

$$
\begin{aligned}
& A-B \quad \text { (here }- \text { means arithmetic subtraction) } \\
= & A+2 \text { 's complement of } B \\
= & A+1 \text { 's complement of } B+1
\end{aligned}
$$

1-bit adder/subtractor

For subtraction, B invert $=1$ and Carry in $=1$

1 -bit ALU for MIPS

Assume that it has the instructions add, sub, and, or, slt.

Less will be used to detect if the 32-bit number A is less than the 32-bit number B.

We now implement slt (If $A<B$ then Set $=1$ else Set $=0$)

A 32-bit ALU for MIPS

