
Average Memory Access time =

Hit time +

Miss Rate x Miss penalty

To reduce it, we can target each of

these factors, and study how these

can be reduced.

Improving Average Memory Access Time:

Reducing Hit Time

Method 1. Use direct-mapped cache.

Method 2.

To improve the hit time for reads,

• Overlap tag check with data access.

• Discard data if tag does not match.

Method 3.

To improve the hit time for writes,

Pipeline write hit stages

 Write 1

Write 2

Write 3 time

TC W

TC W

TC W

Method 4.

Write buffers speed up write-through caches.

 Write
 buffer

 P Main

 memory

 cache

Processor: Cache ¨ data

Write buffer ¨ data

Buffer controller: Main Memory ¨ write buffer

Processor is free after updating the write buffer.

Optimization with write buffer

Possibility of write merge. If an (x:=5) is issued

after an (x:=10) that is still in the write buffer, then

the second write could merge with (i.e. overwrite)

the first write, before M is updated.

Possibility of early reading

Data can be read unfinished previous writes still

pending in the write buffer, although this can

potentially complicate life.

Method 5. Virtual Cache

Only for systems supporting virtual memory

• Virtual address is translated to physical address.

• Physical address is used to check cache tags.

Why not store the virtual addresses as tags?

C M Disk

Tags are Virtual addresses

After context switching

• Either the cache needs to be flushed, since the new

process may try to use the old page numbers.

• Or the tags must contain the process ids that can

be used to distinguish between processes.

Reducing Miss Penalty

Method 1 : Give priority to read miss over write.

Consider a direct mapped cache using write-through.

Assume that addresses 512 and 1024 map to the

same cache block.

M[512] ¨ R3; *value of R3 in write buffer*

R1 ¨ M[1024]; *read miss, fetch M[1024]*

R2 ¨ M[512]; *read miss, fetch M[512]*

value of R3 not yet written

*R2 ≠ R3

Read miss must wait until the write buffer is

empty.

To reduce the wait, let read miss check the write

buffer. If there is no conflict, read M to get the data.

Else, read from the write buffer.

Method 2

Early restart and Critical word first

Do not wait for the whole block to be loaded into the

cache. As soon as the requested word arrives, send

it to the CPU.

Request to transfer the

missing word first. Let

CPU continue while the

rest of the cache block C

is being filled. M

Method 3.

Use additional levels of cache (L2, L3 etc)

Method 4. Nonblocking cache

Instruction 1 Cache Miss

Instruction 2 This is a hit But should it wait for1?

In dynamic instruction scheduling, a stalled instruction

does not necessarily block the subsequent instructions. So,

instruction 2 can pass instruction 1.

Miss access M transfer from M instruction 1

Hit read C instruction 2

Example of Hit under Miss

With a packet switched bus (i.e. split-transaction bus), it is

possible to implement hit under miss under miss.

 Instr 1 accessing M

 Instr 2 accessing M

 Instr 3 reading C
12

3

Support for Nonblocking Cache

 Write
 Buffer

P Main

 memory

 Miss
 Buffer

Extensively used in high performance computer

systems. Miss buffer stores the missing cache lines

from M until these are transferred to the cache by the

cache controller.

What is cache coherence problem?

A first look

M

x

x1 x2

 P1 P2

Consider the scenario:

Initially, x1 = x2 = X = 5.

P1 writes X:=10 using write-through.

P2 now reads X and uses its local copy x2,

but finds that X is still 5.

P2 does not know that P1 modified X.

Impact of cache on I/O

 M M

 C

 Cache Memory

Controller Controller

P I/O P I/O

Configuration 1 Configuration 2

Configuration 1

No cache coherence problem, but there is a risk of

data overrun, when the controller is incapable of

handling the data traffic.

Configuration 2

Coherence problem exists with write-back cache.

A solution to the cache coherence problem

When the processor (or the I/O device) writes into a

shared block, every other copy of it is considered

dirty. The memory controller maintains a list of dirty

blocks.

When the I/O device (or the processor) wants to read

a dirty block, the memory controller supplies a clean

copy of the dirty block from the main memory.

