The Basics of Exception Handling

MIPS uses two coprocessors: C0 and C1 for additional help. C0 primarily helps with exception handling, and C1 helps with floating point arithmetic. Each coprocessor has a few registers.

Interrupts

Initiated outside the instruction stream

Arrive asynchronously (at no specific time),

Example:

- I/O device status change
- I/O device error condition

Traps

Occur due to something in instruction stream.

Examples:

- Unaligned address error
- Arithmetic overflow
- System call
MIPS coprocessor CO has a cause register (Register 13) that contains a 4-bit code to identify the cause of an exception.

Cause register

<table>
<thead>
<tr>
<th>Bits 15-10</th>
<th>Bits 5-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>pending interrupt</td>
<td>exception code</td>
</tr>
</tbody>
</table>

[Exception Code = 0 means I/O interrupt
= 12 means arithmetic overflow etc]

MIPS instructions that cause overflow (or some other violation) lead to an *exception*, which sets the exception code. It then switches to the *kernel mode* (designated by a bit in the status register of CO, register 12) and transfers control to a predefined address to invoke a routine (*exception handler*) for handling the exception.

Status register

<table>
<thead>
<tr>
<th>Bits 15-8</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupt Mask</td>
<td>Interrupt Enable</td>
<td>Kernel/User</td>
</tr>
</tbody>
</table>
(EPC = Exception Program Counter, Reg 14 of CO)

L: add $t0, $t1, $t2

overflow!

Return address (L+4) is saved in EPC

Next instruction

Exception handler routine

Overflow
ra ← EPC; jr ra

Invalid instruction
ra ← EPC; jr ra

System Call
ra ← EPC; jr ra

The Exception Handler determines the cause of the exception by looking at the exception code bits. Then it jumps to the appropriate exception handling routine. Finally, it returns to the main program.

Exceptions cause mostly unscheduled procedure calls.
Example: Read one input from a Keyboard

Consider reading a value from the keyboard. Assume that the interrupt enable bit is set to 1. The first line, ".text 0x80000080" places the code explicitly at the memory location where the interrupt service routine is called.

.pla0x80000080
mfc0 $k0, $13 # $k0 = $Cause;
mfc0 $k1, $14 # $k1 = $EPC;
andi $k0, $k0, 0x003c # $k0 & 0x003c (hex);
 # Filter the Exception Code;
bne $k0, $zero, NotIO # if ($k0 ≠ 0) go to NotIO
 # Exception Code 0 => I/O instr.
sw $ra, save0($0) # save0 = $ra;
jal ReadByte # ReadByte(); (Get the byte).
lw $ra, save0($0) # $ra = save0;
jr $k1 # return;
NotIO: Other routines here

Note that procedure ReadByte must save all registers that it plans to use, and restore them later.
Understanding Logic Design

Appendix C of your Textbook on the CD

When you write add \(t0, t1, t2 \), you imagine something like this:

What kind of hardware can ADD two binary integers? We need to learn about GATES and BOOLEAN ALGEBRA that are foundations of logic design.
AND gate

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X.Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

OR gate

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X+Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NOT gate

<table>
<thead>
<tr>
<th>X</th>
<th>(\bar{X})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Typically, logical 1 = +3.5 volt, and logical 0 = 0 volt. Other representations are possible.
Analysis of logical circuits

![Logic Circuit Diagram]

What is the value of F when X=0 and Y=1? Draw a truth table.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

This is the **exclusive or (XOR)** function. In algebraic form \(F = \overline{X} \cdot Y + X \cdot \overline{Y} \)
More practice

1. Let $\bar{A}.B + A.C = 0$. What are the values of A, B, C?
2. Let $(A + B + C).\bar{A} + \bar{B} + \bar{C}) = 0$. What are the possible values of A, B, C?

• Draw truth tables.
• Draw the logic circuits for the above two functions.