CS 2210 Discrete Structures Algorithms and Complexity

Fall 2017

Sukumar Ghosh

What is an algorithm

A finite set (or sequence) of precise instructions for performing a computation.

$$
\begin{aligned}
& \text { Example: Maxima finding } \\
& \text { procedure } \max \left(a_{1}, a_{2}, \ldots, a_{n}\right. \text { : integers) } \\
& \max :=a_{1} \\
& \text { for } i:=2 \text { to } n \\
& \quad \text { if } \max <a_{i} \text { then } \max :=a_{i} \\
& \text { return } \max \{\text { the largest element }\}
\end{aligned}
$$

Flowchart for maxima finding

start

Time complexity of algorithms

Counts the largest number of basic operations required to execute an algorithm.

Example: Maxima finding

procedure max (a1, a2, ..., an: integers)
max :=a1
1 operation
for $\mathrm{i}:=2$ to n
1 operation $i:=2$
if $\max <a 1$ then $\max :=a i \quad\{n-1$ times $\}$
\{2 ops +1 op to check if i>n+1 op to increment i\}
return max \{the largest element

The total number of operations is $4(n-1)+2=4 n-2$

Time complexity of algorithms

Example of linear search (Search x in a list $a_{1} a_{2} a_{3} \ldots a_{n}$)

$$
\begin{array}{ll}
\mathrm{k}:=1 & \{1 \text { op }\} \\
\text { while } \mathrm{k} \leq \mathrm{n} \text { do } & \{\mathrm{n} \text { ops } \mathrm{k} \leq \mathrm{n}\} \\
\quad\left\{\text { if } \mathrm{x}=\mathrm{a}_{\mathrm{k}} \text { then found else } \mathrm{k}:=\mathrm{k}+1\right\} & \{2 \mathrm{n} \text { ops }+1 \text { op }\}
\end{array}
$$

search failed

The maximum number of operations is $\mathbf{3 n + 2}$. If we are lucky, then search can end even in the first iteration.

Time complexity of algorithms

Binary search (Search x in a sorted list $a_{1}<a_{2}<a_{3}<\ldots<a_{n}$)
procedure binary search (x : integer, $a_{1}, a_{2}, \ldots, a_{n}$: increasing integers)
$i:=1\{i$ is left endpoint of search interval $\}$
$j:=n\{j$ is right endpoint of search interval $\}$
while $i<j$

$$
\begin{aligned}
& m:=\lfloor(i+j) / 2\rfloor \\
& \text { if } x>a_{m} \text { then } i:=m+1 \\
& \text { else } j:=m
\end{aligned}
$$

if $x=a_{i}$ then location $:=i$
else location $:=0 \quad\{$ search failed\}

How many operations? Roughly log n. Why?

Bubble Sort

procedure bubblesort (A : list of items)
$\mathrm{n}=$ length (A)
repeat
for $i=1$ to $n-1$ do
if $A[i-1]>A[i]$ then $\operatorname{swap}(A[i-1], A[i])$
end if
end for
$\mathrm{n}:=\mathrm{n}-1$
until $n=0$
end procedure

Bubble Sort

First pass	$\square 3$	2	2	2	Second pass	2	2	2
	$\xrightarrow{+}$	3	3	3		${ }_{3}$	$\square 3$	1
	4	4	$\checkmark 4$	1		1	1	3
	1	1	-1	4		4	4	4
	5	5	5	5		5	5	5

Third pass \begin{tabular}{cc}
$\subset 2$ \& 1

1 \& | 2 |
| :---: |
| 3 |
| 4 |
| 4 |
| 5 |

\hline
\end{tabular}

Fourth pass

C: an interchange
(: pair in correct order
numbers in color
guaranteed to be in correct order
FIGURE 1 The Steps of a Bubble Sort.

Bubble Sort

$\begin{array}{lllll}3 & 2 & 4 & 1 & 5\end{array}$
$\begin{array}{llllll}2 & 3 & 1 & 4 & 5 & \text { (first pass) }\end{array}$
$\begin{array}{llllll}2 & 1 & 3 & 4 & 5 & \text { (second pass) }\end{array}$
$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & \text { (third pass) }\end{array}$
$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & \text { (fourth pass) }\end{array}$
n -1 operations
n -2 operations
n-3 operations

1
The worst case time complexity is

$$
\begin{aligned}
& (n-1)+(n-2)+(n-3)+\ldots+2 \\
& =n(n-1) / 2-1
\end{aligned}
$$

The Big-O notation

It is a measure of the growth of functions and often used to measure the complexity of algorithms.
DEF. Let f and g be functions from the set of integers (or real numbers) to the set of real numbers. Then f is $\mathrm{O}(\mathrm{g}(\mathrm{x}))$ if there are constants \mathbf{C} and \mathbf{k}, such that

$$
|f(x)| \leq C|g(x)| \quad \text { for all } x>k
$$

Intuitively, $\mathrm{f}(\mathrm{x})$ grows "slower than" some multiple of $\mathrm{g}(\mathrm{x})$ as x grows without bound. Thus $\mathrm{O}(\mathrm{g}(\mathrm{x})$) defines an upper bound of $\mathrm{f}(\mathrm{x})$.

The Big-O notation

$$
\begin{aligned}
& x^{2}+2 x+1=O\left(x^{2}\right) \\
& \text { Since }=4 x^{2}>x^{2}+4 x+1 \\
& \text { whenever } x>1,4 x^{2} \text { defines } \\
& \text { an upper bound of the } \\
& \text { growth of } x^{2}+2 x+1
\end{aligned}
$$

Defines an upper bound of the growth of functions

The Big- Ω (omega) notation

DEF. Let f and g be functions from the set of integers (or real numbers) to the set of real numbers. Then f is $\Omega(g(x))$ if there are constants C and k , such that

$$
|f(x)| \geq C|g(x)| \quad \text { for all } x>k
$$

Example. $7 x^{2}+9 x+4$ is $\Omega\left(x^{2}\right)$, since $7 x^{2}+9 x+4 \geq 1$. x^{2} for all x Thus Ω defines the lower bound of the growth of a function

Question. Is $7 x^{2}+9 x+4 \Omega(x)$?

The Big-Theta (Θ) notation

DEF. Let f and g be functions from the set of integers (or real numbers) to the set of real numbers. Then f is $\Theta(g(x))$ if there are constants C_{1} and C_{2} a positive real number k, such that

C1. $|g(x)| \leq|f(x)| \leq C 2 .|g(x)| \quad$ for all $x>k$

Example. $\quad 7 x^{2}+9 x+4$ is $\Theta\left(x^{2}\right)$,

$$
\text { since 1. } x^{2} \leq 7 x^{2}+9 x+4 \leq 8 . x^{2} \text { for all } x>10
$$

Average case performance

EXAMPLE. Compute the average case complexity of the linear search algorithm.

$$
a_{1} a_{2} \quad a_{3} \quad a_{4} \quad a_{5} \ldots \ldots . a_{n} \text { (Search for } x \text { from this list) }
$$

If x is the $1^{\text {st }}$ element then it takes 5 steps
If x is the $2^{\text {nd }}$ element then it takes 8 steps
If x is the $i^{\text {th }}$ element then it takes $(3 i+2)$ steps
So, the average number of steps $=1 / n[5+8+\ldots+(3 n+2)]=$?

Classification of complexity

Complexity	Terminology
$\Theta(1)$	Constant complexity
$\Theta(\log n)$	Logarithmic complexity
$\Theta(\log n)^{c}$	Poly-logarithmic complexity
$\Theta(n)$	Linear complexity
$\Theta\left(n^{c}\right)$	Polynomial complexity
$\Theta\left(b^{n}\right)(b>1)$	Exponential complexity
$\Theta(n!)$	Factorial complexity

We also use such terms when Θ is replaced by O (big-O)

Exercise

Complexity of n^{5}
Complexity of 2^{n}
Complexity of log (n !)
Complexity of $1^{2}+2^{2}+3^{2}+\ldots+n^{2}$
$O\left(2^{n}\right)$
$\mathrm{O}\left(\mathrm{n}^{5}\right)$
$\Theta(n \log n)$
$\Omega\left(n^{3}\right)$

True or false?
True or false?
True or false?
True or false?"

Let $S=\{0,1,2, \ldots, n\}$. Think of an algorithm that generates all the subsets of three elements from S, and compute its complexity in big-O notation.

Greedy Algorithms

In optimization problems, many algorithms that use the best choice at each step are called greedy algorithms.

Example. Devise an algorithm for making change for n cents using quarters, dimes, nickels, and pennies using the least number of total coins?

Greedy Change-making Algorithm

Let $c_{1}, c_{2}, \ldots, c_{r}$ be the denomination of the coins, (and

$$
\text { for } i:=1 \text { to } r
$$

while $n \geq c_{i}$
begin
add a coin of value c_{i} to the change $\mathrm{n}:=\mathrm{n}-\mathrm{c}_{\mathrm{i}}$
end

Let the coins be 1, 5, 10, 25 cents. For making 38 cents, you will use

1 quarter
1 dime
3 cents

The total count is 5 , and it is optimum.

Question. Is this optimal? Does it use the least number of coins?

Greedy Change-making Algorithm

But if you don't use a nickel, and you make a change for
30 cents using the same algorithm, the you will use 1 quarter
and 5 cents (total 6 coins). But the optimum is 3 coins
(use 3 dimes!)

So, greedy algorithms produce results, but the results may be sub-optimal.

Greedy Routing Algorithm

If you need to reach point B from point A in the fewest number of hops, Then which route will you take? If the knowledge is local, then you are tempted to use a greedy algorithm, and reach B in 5 hops, although it is possible to reach B in only two hops.

Other classification of problems

- Problems that have polynomial worst-case complexity are called tractable. Otherwise they are called intractable.
- Problems for which no solution exists are known as unsolvable problems (like the halting problem). Otherwise they are called solvable.
- Many solvable problems are believed to have the property that no polynomial time solution exists for them, but a solution, if known, can be checked in polynomial time. These belong to the class NP (as opposed to the class of tractable problems that belong to class P)

Estimation of complexity

	10	50	100	300	1000
$5 n$	50	250	500	1500	5000
$n \times$ $\log n$	33	282	665	2469	9966
n^{2}	100	2500	10000	90000	1 million $(7$ digits $)$
n^{3}	1000	125000	1 million (7 digits)	27 million $(8$ digits $)$	1 billion $(10$ digits $)$
2^{n}	1024	a 16-digit number	a 31-digit number	a 91-digit number	a 302-digit number
$n!$	3.6 million $(7$ digits)	a 65-digit number	a 161-digit number	a 623-digit number	unimaginably large
n^{n}	10 billion $(11$ digits $)$	an 85-digit number	a 201-digit number	a 744-digit number	unimaginably large

(The number of protons in the known universe has 79 digits.)
(The number of microseconds since the Big Bang has 24 digits.)
Source: D. Harel. Algorithmics: The Spirit of Computing . Addison-Wesley, 2nd edition, 1992

The Halting Problem

The Halting problem asks the question.
Given a program and an input to the program, determine if the program will eventually stop when it is given that input.

- Run the program with that input. If the program stops, then we know it stops.
- But if the program doesn't stop in a reasonable amount of time, then we cannot conclude that it won't stop. Maybe we didn't wait long enough!

The question is not decidable in general!

The Traveling Salesman Problem

An Instance of the

Traveling Salesman Problem

Cost of Nearest Neighbor Path, AEDBCA $=550$

Starting from a node, you have to visit every other node and return To you starting point. Find the shortest route? NP-complete

3-Satisfiability Problem

Consider an expression like this:

$$
(x
$$

Does there exist an assignment of values of x, y, z so that this formula is true? NP-Complete problem!

