22C:166 Distributed Systems and Algorithms
Homework 4
Total points = 50
Assigned 11/2/11, due 11/09/11 11:59 PM
You can work in groups of two for this assignment

Background. In a 1983 paper, Ben-Or [B83] showed how to overcome the FLP impossibility result on asynchronous consensus using probabilistic actions. Ben-Or’s solution is described below.

Let \(n \) be the total number of processes, of which at most \(t \) processes may crash. The proposed consensus algorithm progresses in several asynchronous rounds, each round consists of several steps. Based on the response received in a particular round, actions in the next round are determined. Only binary decision values (0 or 1) are considered. Each message sent out by a process has the following four fields:

- A step number \(s \) that indicates the current step in a round;
- A round number \(r \) that indicates the current round;
- A binary value \(b \) which is either 0 or 1;
- A flag \(u \) or \(d \) indicating two different stages (undecided or decided) in decision-making

<table>
<thead>
<tr>
<th>Step</th>
<th>{Program for process i}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(step 0: initialization) (b :=) initial value of process (i); (r := 0) do true (\rightarrow)</td>
</tr>
<tr>
<td>1</td>
<td>{step 1} broadcast ((1, r, b, u))</td>
</tr>
</tbody>
</table>
| 2 | {step 2} receive at least \(n-t \) messages of type \((1, r, \cdot, \cdot) \); \{Let \(m \) be the maximum number of processes that sent the same value \(v \)\}
| 2.1 | if \(m > n/2 \) \(\rightarrow \) broadcast \((2, r, v, d) \)
| 2.2 | \(m \leq n/2 \) \(\rightarrow \) broadcast \((2, r, b, u) \) |
| | fi |
| 3 | {step 3} receive at least \(n-t \) messages of type \((2, r, \cdot, \cdot) \); \{Let \(p \) be the max \# of processes that sent \((2, r, v, d) \) messages\}
| 3.1 | if \(0 < p < t + 1 \) \(\rightarrow \) \(b := v \);
| 3.2 | \(p \geq t + 1 \) \(\rightarrow \) \(b := v \); decide \(v \); \{this is the final decision\}
| 3.3 | \(p = 0 \) \(\rightarrow \) \(b := \) random \(\{0,1\} \); |
| | fi |
| 4 | {step 4} \(r := r+1 \) od |
What you have to do

Study how the solution works. Ben-Or claimed that the above algorithm solves the asynchronous consensus problem when \(n > 2t \). You have to prove the following three lemmas and answer the last question:

Lemma 1. If every process has the same initial value \(v \), then every process decides \(v \) within one round.

Lemma 2. Two non-faulty processes cannot decide different values.

Hint. Two different non-faulty processes may not reach agreement when they set their b-values differently using the action in line 3.1 or 3.2. To prove agreement, first show that in any round \(r \), it is impossible for one process \(i \) to receive a \((2, r, v, d) \) message, and another process \(j \) to receive a \((2, r, w, d) \) message, \((v \neq w)\).

Lemma 3. Show that at least one process eventually decides.

Question. If at least one process finally decides \(v \) in round \(r \), then in which round will every process finally decide \(v \)?

Observe that Step 2 requires "more than \(n/2 \) out of the \(n-t \) messages received" to have the same value \(v \) in order that a process changes its b-value to \(v \). This is not guaranteed unless \(n-t > n/2 \).

Reference

(Feel free to look at the original paper. The author did not present any proof of his algorithm there)