
Group Communication

Group oriented activities are steadily increasing.

There are many types of groups:

® Open and Closed groups

® Peer-to-peer and hierarchical groups

Important issues

® Atomic multicast

® Ordered multicast

® Dynamic groups

Sometimes, certain features available in the

infrastructure of a distributed system simplify the

implementation of multicast. Examples are (1)

multicast on an ethernet LAN (2) IP multicast

Atomic multicast

A multicast by a group member is called atomic,

when the message is delivered to every correct (i.e.

functioning) member, or to no member at all. A

simple implementation:

Sender’s program Receiver’s program

i:=0; if m is new Æ

do i ≠ n Æ accept it;

 send message to i; multicast m;

 i:= i+1 � m is duplicate Æ discard m

od fi

Distinguish between basic and reliable versions. The

basic version does not consider process crashes.

Ordered multicasts

® Total order

® Causal order definitions?

® Local order (single source FIFO)

Why are they important?

® Total order multicast is useful in the consistent

update of replicated servers

® Causal order multicast is relevant in implementing

bulletin boards

® Local order multicast is useful in updating cache

memories in multi-computers

Implementing ordered multicasts

(basic version)

Total Order Multicast using a sequencer

` Sequencer S

Every process forwards the data to the sequencer.

{The sequencer S}

define seq: integer (initially seq=0}

do receive m Æ multicast (m, seq); seq := seq+1;

 deliver m

od

Every process accepts and delivers the messages in

the increasing order of seq.

Total order multicast without a sequencer

Uses the idea of two-phase commit.

 3!!!!!!!!!!! 18 22

4 6

7 10 14

19

p

q

r

Step 1. Sender i sends (m, ts) to all

Step 2. Receiver j saves it in a holdback queue, and sends

(a, ts)

Step 3. Receive all acks, and pick the largest ts. Then send

(m, commit) to all.

Step 4. Receiver removes it from the holdback queue and

delivers m.

Implementing causal order broadcast

Use vector clocks. (Note the difference from the

classical model)

1,0,0 2,1,0
0,0,0

0,0,0

0,0,0

1,1,0

2,1,1

? (violation)

(1,0,0)

(1,1,0)

(2,1,0)
(1,0,0)

(1,0,0) (1,1,0) (2,1,0)

P0

P1

P2

m1 m1 m2

m2

m3

m3

The recipient i delivers a message from j iff

1. VCj(j) = LCj(i) +1 {LC is the local vector clock}

2. "k: k≠j :: VCk(j) ≤ LCk(i)

What is the rationale behind these rules?

Dealing with open groups

Processes may join or leave a group, but life will be

simpler, if everyone has a consistent view of the

current membership. A list of the current members

is called a view.

Views should propagate in the same order to all.

Example.

Current view v0(g) = {0, 1, 2, 3}.

Let 1, 2 leave and 4 join the group concurrently.

These view change can be serialized in many ways:

{0,1,2,3}, {0,1,3} {0,3,4}, OR

{0,1,2,3}, {0,2,3}, {0,3}, {0,3,4}, OR

{0,1,2,3}, {0,3}, {0,3,4}

Collected from local observations and send by a total

order multicast.

