
The sliding window protocol

next

last

.

.

:

S R

last + w

j

}accepted
messages

(s, r)

(r, s)

Creates a reliable FIFO channel on top of an unreliable

channel that can lose and reorder messages. The

requirements are:

® No loss

® No duplication

® No reordering

Last + 1 Last + w

Window begins next Window ends

1. Sender can send up to w messages without receiving

acks. If no ack is received, then the entire window of

messages is retransmitted

2. Receiver accepts a message if it is anticipated.

Otherwise, it sends back an ack for the last message that it

received.

{Sender’s program}

{m[k] = kth message to be transmitted}

do last+1 ≤ next ≤ last + w Æ send (m[next], next);

next := next + 1
� (ack, j) is received Æ if j > last Æ last := j

� j ≤ last Æ skip

fi
� timeout (R,S) Æ next := last + 1 {Retransmission begins}

od

{Receiver’s program}

define j : integer (initially 0);

do (m[next], next) is received Æ

if j = next Æ accept the message;

send (ack, j); j:= j+1

� j ≠ next Æ send (ack, j-1)

fi;
od

Question 1. Why does it work?

Question 2. Can we solve it using bounded sequence

numbers?

The Alternating Bit Protocol

It is a special version of the window protocol that works

only on FIFO channels. The window size w = 1.

 m[1],1 m[0],0 m[0],0

 S R

(ack, 0)

{Sender’s program}

initially next = 0, sent = 1, b = 0;

{Both channels are empty};

do sent ≠ b Æ send (m[next], b);

next := next +1;

sent := b

� (ack, j) received Æ if j = b Æ b := 1-b

� j ≠ b Æ skip

fi
� timeout (r,s) Æ send (m[next-1], b)

od

{Receiver’s program}

define j : 0 or 1;

initially j = 0;

do (m[next], b) is received Æ

if j = b Æ accept the message;

send (ack, j);

j:= 1 – j
� j ≠ b Æ send (ack, 1-j)

fi
od

How TCP works

TCP is a polished version of the sliding window protocol.

What about generating unique sequence numbers?

Randomly chosen 32/64-bit pattern is most likely unique.

Also, all sequence numbers older than 2d are discarded,

where d is the round-trip delay.

send (m, y+1)

ACK, ack=y+1

Sender Receiver

ack (y+2)

SYN seq = x

SYN, seq=y, ack = x+1

3-way handshake

Consensus

The consensus problem (crudely speaking, reaching

agreement) is the mother of all (well, most) problems in

distributed computing. Examples are

Leader election

Mutual exclusion

Decision to commit or abort in transactions

Clock synchronization

0

1

N-1

Inputs outputs

The problem becomes tricky if some of them are faulty. We

are interested in this non-trivial version.

Requirements

Termination. Every non-faulty process must eventually

decide.

Agreement. The final decision of every non-faulty process

must be identical.

Validity. If every non-faulty process starts with the

 same initial value v, then their final decision

values must be v.

Review the significance of these requirements.

An impossibility result

FLP Theorem (due to Fischer, Lynch, Patterson):

It is impossible to design a consensus protocol that will

tolerate the crash failure of even a single process

(to be continued)

