A NOTE ON PASCAL SCOPES

T. P. Baker and A. C. Fleck
Department of Computer Science
The University of lowa
lowa City, lowa 52242

In response to the recent efforts toward development of a PASCAL standard [1], we
would like to point out a peculiarity we have observed in the PASCAL notion of scopes as
exemplified in the E.T.H. compilers, and to suggest how a "cleaner" alternative notion might
be implemented.

Beginning with ALGOL60, "block structured" languages have followed the convention
that scopes of local declarations correspond to the boundaries of the blocks in which they
occur. Since PASCAL superficially appears to follow this convention, a programmer is likely
to go along for some time before he stumbles upon a case where PASCAL scopes do not
correspond to block boundaries. When he does, it is likely to be a source of confusion. For
example, consider the programs and output below (from Version 3 of the PASCAL 6000
compiler).

1 PROGRAM P1(OUtPUT);

2 PROCEDURE Q; BEGIN WRITELN(1) END;

3 PROCEDURE R;

4 PROCEDURE S; BEGIN Q END;

5 PROCEDURE Q; BEGIN WRITELN(2) END;
6 BEGIN S; Q END;
7 BEGIN R END.

—_

2
1 PROGRAM P2(OUTPUT);
2 TYPE A = CHAR,;
3 PROCEDURE Q;
4 TYPE B ="A;
5 A =RECORD L,R: B END;
6 VARX:B;
7 BEGIN NEW(X); XA :='A' END;
8 BEGIN Q END.
1 PROGRAM P3(OUTPUT);
2 VAR F: INTEGER,;
3 PROCEDURE Q;
4 PROCEDURE R; BEGIN WRITELN(F) END;
5 FUNCTION F: INTEGER; BEGIN F := 2 END;
6 BEGIN R; WRITELN(F) END;
7 BEGIN F :=1; Q END.
1
2

PASCAL NEWS #17

Note that according to current and proposed scope rules [1], this is the "correct"
program behavior in each case.

We propose that PASCAL can be standardized to follow the ALGOL60 conventions, with
the added restriction that (except in recursive pointer type declarations) no use of an
identifier may precede its declaration (this appears to be the approach taken in ADA [2]).
Thus, program P1 above would be considered incorrect, since the use of Q in procedure S
precedes a local definition of Q. P3 would be incorrect for a similar reason, because the use
of F in procedure R precedes a local declaration of F. Program P2 would be considered
incorrect, but for a different reason. The variable X would be interpreted as a pointer to a
record, so that the assignment "X* :='A" would be a type conflict. This is exactly what would
have happened if the outer declaration "A = CHAR" had not been present. In this case, the
convention followed by the compiler not only makes the interpretation of the procedure Q
dependent in an unobvious way on its global environment, but also effectively blocks the
possibility of defining a pointer type for the local record type A.

A single pass compiler can enforce these conventions. On first encountering a use of an
identifier X that is not yet declared in the local block, the compiler attempts to resolve the
reference to a previously processed nonlocal declaration, say D, in one of the surrounding
blocks. If this search is successful, the processor creates new "dummy" entries for X in the
symbol table for the local block and all surrounding blocks, out to the block where D
appeared. These dummy entries will contain a pointer to the entry corresponding to D and
will serve the purpose of insuring that any subsequent declaration of X locally will be deleted
and treated as an error.

PASCAL already provides means for handling the few cases where forward references
are unavoidable. For procedures, functions, and labels, there are forward declarations. For
recursively defined pointer types, processing can be deferred until it can be determined
whether a type identifier should be resolved as a local or nonlocal reference. For example,
processing of "B = A" in P2 would be deferred until the local declaration of A was
encountered (or until the end of the TYPE section).

We believe that the proposed conventions are an improvement in the direction of
simplicity and conformity to established practice, Furthermore, as exemplified best in
program P2, they improve program modularity, by permitting reliable local resolution of
references, which under present rules is impossible.

[11 A.M. Addyman er al. "A draft description of PASCAL", Software Pract. & Exper. 9,
5(1979), 381-424; also PASCAL News 14, 6(1979), 7-54.

[2] Preliminary ADA Reference Manual, SIGPLAN Notices 14, 6(1979).

MARCH, 1980 PAGE 62



