Notes on Predicate Logic Basic Definitions & Examples

Here is a brief synopsis of the predicate logic definitions together with a few illustrative examples.

Terms

Atomic terms are either variables or constant names. Compound terms are function names applied to other (possibly compound) terms.

Formulas

Atomic formulas are predicate names applied to argument *terms*. Compound formulas are atomic formulas joined together with the usual propositional logical connectives, plus *universal quantification* (\forall) and *existential quantification* (\exists).

Interpretations

An interpretation identifies:

- a universe to be used in universal and existential quantification,
- an assignment of each function name to some function acting on the universe,
- an assignment of each predicate name to some relation over the universe,
- an assignment of each free variable and each constant name to some value in the universe .

Formula evaluation

Once an interpretation makes assignments to all the names appearing in a formula, evaluation can proceed in the expected manner and results in a true or false value.

Valid formulas and Models

An interpretation is said to **satisfy** a formula if the formula evaluates to true in that interpretation, and we say the interpretation is a **model** of the formula. A formula F that is satisfied by *every* interpretation is called **valid**, written \nexists F.

Examples

At the outset we need to identify each of the names we will use in a logical system, and for functions and predicates, the number of arguments (f/3 means f takes 3 arguments).

Function names: a/1, b/2. Constant name: c. Variable names: x, y. Predicate names: p/1, q/2. Atomic terms: c, x, y. Compound terms: a(c), a(x), b(x,y), b(a(c),y), b(b(x,y), b(a(c),y)). Atomic formulas: p(a(x)), p(b(b(x,y),b(a(c),y))), q(b(a(c),y), b(x,y)). Compound formulas: b(x,y) \land b(a(c),y), a(x) \Rightarrow b(x,y), \forall x p(a(x)), \exists x(\forall y b(x,y)). Interpretation \mathscr{I} : universe = Natural numbers; $\mathscr{I}(c) = 2$; $\mathscr{I}(x) = 5$; $\mathscr{I}(y) = 21$; $\mathscr{I}(a(n)) = 2^*n$; $\mathscr{I}(b(m,n) = m+n; \mathscr{I}(p(n)) = n>7; \mathscr{I}(q(m,n)) = m-1>n$. So \mathscr{I} is a model of p(a(x)), but does not satisfy q(a(c), b(c,c)).