
22C:185: Fall 2004

page 1 of 3

Midterm Exam
Sample Solutions

Problem 1.
Any of several instances of ambiguity could be identified as a response. For one,
consider a command of the form while b do c1; c2. This has two structural descriptions.

command command

while expr do command command ; command

b command ; command while expr do command c2

 c1 c2 b c1

Another example would be a command of the form if b1 then if b2 then c1 else c2 that
has two structural descriptions.

command command

if expr then command if expr then command else command

 b1 if expr then command else command b1 if expr then command c2

 b2 c1 c2 b2 c1

22C:185: Fall 2004

page 2 of 3

Problem 2.
The first production in this attribute grammar is replaced by two new rules, namely

<binary numeral> ::= <binary digits>1.<binary digits>2 e <binary digits>3, and
<binary numeral> ::= <binary digits>1.<binary digits>2 e- <binary digits>3.

These productions provide for the addition of a binary exponent suffix. All the other
productions and their attribute rules are unchanged. Note that in the examples in the
problem statement, the exponent value is used as the multiplier (or dividend). This is in
contrast with common usage where the multiplier has the exponent part as the power of
the base -- this may have been distracting and was not enough simpler to justify it, sorry.
Either of these choices was given full credit (and differ technically in a very small way).
For consistency with the problem statement, the attribute evaluation rules provided here
take the former approach (just put Val(<binary digits>3) as the exponent of 2 for the
latter).
Syntax rules Attribute evaluation
<binary numeral> ::=
<binary digits>1.<binary digits>2

 e<binary digits>3

Val(<binary numeral>) fl

 (Val(<binary digits>1)

 +
Val(<binary!digits>2)

2Len(<binary!digits>2)) * Val(<binary digits>3)

<binary numeral> ::=
<binary digits>1.<binary digits>2

 e-<binary digits>3

Val(<binary numeral>) fl

 (Val(<binary digits>1)

 +
Val(<binary!digits>2)

2Len(<binary!digits>2)) / Val(<binary digits>3)

Since the Val(<binary digits>) attribute is correctly determined by the original attribute
grammar rules, the only need is to adjust Val(<binary numeral>). Adding a positive or
negative exponent requires the value of the numeral preceding the exponent to be
multiplied/divided by the appropriate value. This is determined using the Val(<binary
digits>) attribute, and then applied as indicated above.

22C:185: Fall 2004

page 3 of 3

Problem 3.
For the abstract syntax, we need only make the change that provides for an optional
expression in declarations. In the abstract syntax we just use the pair notation
<Identifier, Expression> for this case.

Declaration ::= var (Identifier | <Identifier, Expression>)+ : Type;

For the semantics, since declarations now can have an effect on the store, we must
change the definition of the meaning function to incorporate their effect.

meaning[program I is D begin C end] = (execute[C] º execute[D]) emptySto

Then the definition of the execute function must be extended to apply to the
declarations. Hence its signature must be changed to

execute : Command + Declaration* --> (Store --> Store).

Finally, the additional cases of the definition of the execute function must be given.
execute[I:T] sto = sto
execute[<I, E:T>] sto = updateSto(sto, I, evaluate[E] sto)
execute[V1,V2:T] = execute[V2:T] º execute[V1:T]
execute[] sto = sto
execute[D1;D2] = execute[D2] º execute[D1].

