
25

PART I

THE FINITE STATE PARADIGM

26

Chapter 1

Regular Expressions and Acceptors

Section 1.0: Introduction

Throughout this book we will be interested in sequences of symbols,
including functions acting on them, and sets of “associated” sequences. The
individual symbols themselves are of secondary importance, and we choose
to leave them abstract and indefinite for the most part. The symbols may be
the binary set {0,1}, and indeed, all of electronic digital computing is
eventually reduced to such sequences. At another level, we may be interested
in the sequences of ASCII characters that constitute a legal, say, Pascal
program. Another option is that each of the possible bit combinations of a
32-bit computer word may be regarded as one of our symbols, yielding a
large (but finite) collection of primitive symbols. We usually just assume
that there is some pre-determined finite, non-empty set Σ that is the universe
of distinct atomic symbols — this set is referred to as the alphabet and its
elements are often called letters.

In fact, many details are omitted in the models we consider. Our intent is
to adopt a level of abstraction that helps to provide a clear focus on broadly
applicable limitations. Abstraction is sometimes regarded as complicating
understanding, but quite the contrary is the case. An abstraction simply
focuses on one collection of interrelated matters while excluding others.
Abstraction is a useful tool, even in everyday matters. One excellent
illustration of this is a road map — it omits numerous details (e.g., speed

Regular Expressions and Acceptors 27

limits, stop light location, etc.) and thereby allows undivided attention to be
directed to the selection of a route. Our use of abstraction is for an analogous
purpose — to make some things more clear while deferring consideration of
others. As we all know, in computing every detail must be precisely correct.
But just this fact, when combined with the enormous number of details
involved in many computing applications, implies that we must find
abstractions that permit us to avoid the consideration of everything at once.

Eventually any computing task will be accomplished using some specific
machine. But one does not initiate problem analysis at the machine level.
Before such details can be resolved, we need to organize our thinking and
devise the overall approach to be taken to complete the task. In this book we
are concerned with computational models at a high level of abstraction. Thus
the insights and results we develop are valid for a great variety of specific
computing systems. Since we will proceed in a completely machine
independent manner, but also wish to retain complete precision in our
thinking, we are led to describing the concepts we use with precise
definitions, and to following a rigorous process of deduction to understand
the properties we can expect to observe in corresponding systems.

To draw an analogy with familiar computational descriptions — when
we write a program, we have a finite description (the program) of an infinite
entity (the program’s “meaning”). The meaning of the program is the
collection of all the computations it will carry out when presented with its
various valid inputs. When we design a program, we seek to understand this
entire collection of computations by examination of its finite description.
Overcoming the great gap between a finite static description and a complex
dynamic behavior is a dominant issue in computing. Developing means to
facilitate this kind of insight and the determination of intrinsic barriers for
various models of computing will be our goal throughout this book.

The computing systems we study can be categorized in several ways.
One kind, the “transducer”, responds to each input sequence by giving an
output sequence, and several varieties of these devices are considered in later
chapters. This abstraction conforms to our natural intuitive view of the
input/output character of computing. For now we pursue a simpler model
than that — devices that serve to simply identify a distinguished collection
of sequences. Such models may in turn either describe how to “generate” an
arbitrary element of the collection, or how to “recognize” whether or not an

28 Formal Models of Computation

arbitrary candidate string belongs to the collection. For recognizers there is a
single binary-valued response for each input sequence; these responses are
normally referred to as acceptance and rejection. We will see later that this
is not as restrictive a view of computation as might appear at first glance.

Section 1.1: Regular expressions

In this chapter we consider some elementary computing models that simply
describe a collection of sequences. This is a somewhat unusual place to
begin the technical development. However, the first mechanism we consider
names the objects of central consideration in this part of the book, so it is an
appropriate starting point. It is a generation-oriented model, and a
complementary recognition model is developed in the next section.

For a given set of symbols Σ, we use the notation Σ* to refer to the set of
all finite sequences (sometimes called strings) over Σ. Thus if Σ={0,1}, then

Σ* = {ε, 0, 1, 00, 01, 10, 11, 000, … }. Hence Σ* is an infinite set. We
introduce and consistently use the notation ε to denote the null (or empty)
sequence which would be invisible without a special notation. Each

sequence x∈Σ * has a length, written len(x), which is the number of elements

in the sequence. Thus len(ε)=0, len(101)=3, etc. For sequences x,y∈Σ * we
write sequence concatenation simply as the juxtaposition xy. Of course, εx

= xε = x and (xy)z = x(yz) for all x,y,z∈Σ *. Concatenation has the sense of a
multiplying operation for strings (with ε as identity), and provides the basis

for defining the “power” notations. Thus for x∈Σ *, we inductively define:
x0 = ε, and
xn+1 = (xn)x, for n≥0.

For example, instead of 0000, we usually write 04, and for 010101, we
may write (01)3. Since concatenation is associative, the power notation

satisfies the familiar law of exponents, xnxm = xn+m for all x∈Σ * and n,m≥0.

Any subset L of sequences, L ⊆ Σ*, is referred to as a language.
Languages that may be of interest in various computing circumstances are
sets of sequences such as:

Regular Expressions and Acceptors 29

• the set of all odd parity sequences in {0,1}*,

• the set of all valid Pascal identifiers in {Pascal character set}*, or

• the set of all legal Pascal programs in {Pascal character set}*.

It often takes some time to sink in, but it is critical to recognize the set
nature of the definition of “language” — either the omission of any intended
strings, or the inclusion of any prohibited strings would be regarded as
providing an utterly incorrect description. We are interested in languages as
precisely exact units.

When considering sets, two may be distinguished. One is the universe
that contains all elements, and every set under consideration is a subset of

this set. For languages this is Σ* for an appropriate alphabet Σ. The other is
the empty set which has no elements and is a subset of every set under
consideration. We use the usual notation, ∅ , for the empty set. Sometimes
the empty set and the null sequence are confused with one another, so be
careful about this — while they are analogous in the sense of “having no
elements”, they are different types of entities altogether, one is a set and the
other a sequence.

There are three operations on languages that are of fundamental utility.
The first of these is the familiar operation of set union. We now define the
other two. The second of the operations, called language concatenation,

combines two languages L1, L2 ⊆ Σ* and is defined as L1•L2 = {xy | x∈ L1

and y∈ L2}. So this operation elevates concatenation to the level of sets of

strings by producing all possible combinations of sequence concatenations
for strings chosen from each of the languages. Notice that {ε}•L = L•{ε} = L

and ∅ • L = L • ∅ = ∅ for all L ⊆ Σ*. Language concatenation has the sense
of a multiplying operation for languages (with ∅ as zero and {ε} as identity),
and provides the basis for also defining the “power” notations for languages.

For L ⊆ Σ*, we inductively define:
L0 = {ε}, and
Ln+1 = Ln• L for n≥0.

Thus L1 = L, L2 = L•L, L3 is L concatenated with itself three times, and
consists of all strings which can be formed by the concatenation of any three

30 Formal Models of Computation

strings chosen from L, etc. Language concatenation is also associative, so the
power notation for languages satisfies the law of exponents, Ln• Lm = Ln+m

for all L ⊆ Σ* and n,m≥0.

Example 1.1.1.
With alphabet Σ={0,1}, consider the three languages L1 = {1, 10}, L2 =

{0,00}, and L3 = {ε, 10, 1010, 101010, … } = { (10)n | n≥0}. Then L1• L2 =

{10, 100, 1000}, L2• L1 = {01, 010, 001, 0010}, and L2• L3 = {0, 00, 010,

0010, 01010, 001010, … } = {0(10)n | n≥0} ∪ {00(10)n | n≥0}. L2
1
 = {11,

110, 101, 1010} = {12, 120, 101, (10)2}.
❑

The third operation, called Kleene closure, applies to a language L ⊆ Σ*

and is defined as L* = L0 ∪ L1 ∪ L2 ∪ L3 ∪ … = ∪
n=0

∞
 Ln. This operation

yields the set of all strings that can be formed from an arbitrary number of
repetitions of strings selected from L. We will also have occasion to utilize a

closely related operation, positive closure, that is defined as L+ = L• L* =

L1 ∪ L2 ∪ L3 ∪ … = ∪
n=1

∞
 Ln, and which differs from L* by only ε.

Example 1.1.2.

Continuing Example 1.1.1, notice that {0, 1}* = {0, 1}0 ∪ {0, 1}1 ∪ {0,
1}2 ∪ … = {ε} ∪ {0, 1} ∪ {00, 01, 10, 11} ∪ … = {ε , 0, 1, 00, 01, 10, 11,

… } = all sequences. Hence our prior use of the notation Σ* for all finite

sequences is consistent with the definition of Kleene closure. Also, {10}* =
{10}0 ∪ {10}1 ∪ {10}2 ∪ …= {ε} ∪ {10} ∪ {1010} ∪ … = {ε, 10, 1010,

… } = L3 Lastly, L*
1
 = {1, 10}0 ∪ {1, 10}1 ∪ {1, 10}2 ∪ … = {ε} ∪ {1,

10} ∪ {11, 110, 101, 1010} ∪ … = {ε, 1, 10, 11, 110, 101, 1010, … }.
�

The operations we have introduced are frequently encountered in day-to-
day computing. For instance, they are used in many text editors to specify
search strings, and they are used (sometimes informally) to describe the

Regular Expressions and Acceptors 31

syntax of various programming language constructs (e.g., Pascal identifiers).
We will shortly present additional examples.

We are going to be considering ways of describing sets of sequences. For
finite sets, an obvious solution is to just write down each of the individual
sequences. But for most cases of interest, the sets are not finite — for
example valid Pascal identifiers, or legal Pascal programs. Since we cannot
simply enumerate all the elements of an infinite set, we must seek other
means to describe such sets. Generally we will be investigating ways in
which we can construct useful finite descriptions of (potentially) infinite
objects. A central issue will be what information about an object can be
extracted from its description, and how the extraction can be accomplished.

Our first mechanism is referred to as the language of regular
expressions. This mechanism can be viewed as a meta-language — a
language whose purpose is to describe other languages. As a functioning
language it has rules of syntax, and a meaning which is associated with each
of its valid utterances. First we introduce its rules of syntax.

Definition 1.1.1: Given an alphabet Σ we assume several (seven to be exact)

additional (meta) symbols which must not belong to Σ, namely {ε, ∅ , +, •, *,

(,)}. The regular expressions over Σ are finite sequences containing this
extended set of symbols, and are determined inductively as follows:

(i) ε, ∅ , and each λ∈Σ is a regular expression,

(ii) if α and β are regular expressions, then so are (α+β), (α•β), and (α*),
(iii) nothing is a regular expression unless it follows from finitely many

applications of (i) and (ii).

Definition 1.1.1 provides precise rules for well-formed regular
expressions. Actually, it defines them in fully parenthesized form, a
restriction we will relax shortly. The meaning to be associated with each
valid regular expression has yet to be specified. We are going to regard each
such expression as the (finite) description of a (possibly infinite) language

over Σ*. We wish to carefully consider which languages can be described
with regular expressions, and what properties such languages must possess.
Regular expression are descriptions of languages built-up from letters of the
alphabet using concatenation, union, and Kleene closure. Formally we define

32 Formal Models of Computation

their meaning inductively, following the structure provided by Definition
1.1.1, and using the operations on languages that were introduced previously.

Definition 1.1.2: With each regular expression α over the alphabet Σ, we

associate a language µ(α) ⊆ Σ* that is its meaning as follows:
µ(ε) = {ε},
µ(∅) = ∅,
µ(λ) = {λ} for each λ∈Σ,
µ(α+β) = µ(α) ∪ µ (β),
µ(α•β) = µ(α)•µ(β),

µ(α*) = (µ(α))*.

Definition 1.1.3: A language L ⊆ Σ* is regular if there exists a regular
expression α so that L = µ(α). Also, we say that two regular expressions α
and β are equivalent, written α ≡ β , if µ(α) = µ(β) [and of course, ≡
satisfies the conditions for an equivalence relation on the collection of
regular expressions].

Regular expressions were invented by the logician Stephen Kleene (as
acknowledged by the name for the '*' operation noted above) in the early
1950s in his study of formal systems called automata. Indeed this was the
origination of the investigations we pursue in this chapter. However, since
that time regular expressions have come to be widely used for practical
purposes such as specifying programming language syntax and describing
search patterns in text editors and string processing systems. In the past few
years there has been an amazing proliferation of “scripting languages” (e.g.,
awk, sed, Perl, Tcl, Python, Rexx). These languages include regular
expressions as an integral part, and their expressiveness is profoundly
effected by those facilities. Regular expression facilities have become so
prevalent that the POSIX standard for operating systems [IEE 93] includes a
section on regular expressions, and a book entirely devoted to regular
expressions in this context has recently been published ([Fri 97]). While
there are numerous embellishments in the programming context, this model
is in essence the same one that we investigate from a conceptual perspective
here.

Regular Expressions and Acceptors 33

The objects of interest here are languages (i.e., subsets of Σ*), and their
descriptions are given by regular expressions. Notice that all the finite
languages are clearly regular — by concatenating letters, any string can be
formed, and by taking the union of individual strings (i.e., singleton sets),
any finite set can be formed. Also, certain properties of these languages are
readily apparent. For example, inherent in their definition, we see that
regular languages are closed under union, language concatenation, and
Kleene closure — that is, performing one of these operations on regular sets
must produce another regular set. Briefly put, the regular languages
constitute the smallest family of languages which contain the finite
languages and are closed under these three operations (union, language
concatenation, and Kleene closure).

The careful reader may have observed that there is some subtlety in
reading the meaning equations of Definition 1.1.2. For example, in the
equation µ(∅) = ∅ , the occurrence of the symbol ∅ on the left-hand side is
one of the meta-symbols of the language of regular expressions, whereas the
occurrence of ∅ on the right-hand side is the usual notation denoting the
empty set. Similar observations can be made about other equations. This is
perhaps also a good time to raise a caution about the “overloading” of the
symbol '='. For instance, when we write µ(α) = µ(β) we are referring to an
equality between sets of strings, and one must understand set equality.
However, when we write α = β for regular expressions α and β, we are
referring to sequences of symbols, and we are expressing sequence equality.

Finally, in order to provide more convenient and usable notation, we
relax our definition of regular expressions just a bit. Writing regular
expressions in fully parenthesized form as they are formally defined
interferes with readability and is tedious. So, we adopt a convention similar
to that for expressions in programming languages, and assign each of the
three regular expression operations a precedence. In the absence of
parentheses, Kleene closure has highest precedence, language concatenation
has intermediate precedence, and union (+) has lowest precedence. Repeated
occurrences of the same operation may be understood in left-to-right order,
but since the operations are associative this is not significant. Also, we often
omit the operation symbol for language concatenation and simply juxtapose
the operands. Notice that with these conventions, we may only be able to

34 Formal Models of Computation

distinguish a regular expression from an ordinary string by the context of its
use.

Example 1.1.3: regular expressions using alphabet Σ={0,1}:
(a) The regular expression ((1•0)•1) may be written without parentheses as

1•0•1 and then simply as 101. Its meaning is µ((1•0)•1) = µ(1•0)•µ(1)
= (µ(1)•µ(0))•µ(1) = ({1}•{0})•{1} = {101}.

(b) The regular expression (0*) will be written 0*. Its meaning is µ(0*) =

µ(0)* = {0}* = {ε, 0, 00, 000, … }; we may indicate this by µ(0*) = {0n

| n≥0}.

(c) The regular expression ((1•(0*))•1) is written 10*1. Its meaning is

µ(10*1) = (µ(1)•µ(0)*)•µ(1) = {1}•{0n | n≥0}•{1} = {10n1 | n≥0}.

(d) The regular expression (((1•0)•1)+((1•(0*))•1)) is written 101+10*1.

Then µ(101+10*1) = µ(101) ∪ µ (10*1) = {101} ∪ {10n1 | n≥0} =

{10n1 | n≥0}.

To help provide some intuition about regular expressions, compare the
following examples with their corresponding informal English descriptions
(taking Σ={0,1}).

(e) all sequences — (0+1)*

(f) all sequences ending with '1' — (0+1)*1
(g) the three sequences 00, 11, and 101 — 00+11+101

(h) all sequences with an even number of '1's — 0*(10*10*)*.

(i) all sequences where no '0' follows a '1' — 0*1*.

(j) all sequences either starting with '0' or ending with '1' — 0(0+1)* +

(0+1)*1

(k) all sequences with the same first and last character — 0+1+ 0(0+1)*0 +

1(0+1)*1
(l) all sequences, except for the three sequences 00, 11, and 101 —

ε+0+1+10+ (01 + 100 + (00+11+101)(0+1)) (0+1)*.
�

There are many times that a clear and unambiguous English description
cannot be given. The purpose of a formalism such as regular expressions is

Regular Expressions and Acceptors 35

to provide a description that is precise and unmistakable in all cases.
Furthermore, as we will see in the following sections, regular expressions
provide the basis for effective automation. The capacity to facilitate
algorithmic processes and their analysis guides the nature of the formalisms
we seek to develop.

The Kleene closure operation plays a central role here since regular
expressions start with finite sets (singleton sets of individual letters actually),
and only Kleene closure produces an infinite result from finite arguments.
Since a principal goal is to provide finite descriptions for infinite sets, a good
understanding of Kleene closure is critical.

There are a number of useful regular expression identities (actually we
present schemes for describing identities for many specific regular
expressions). Verifying such identities provides a first encounter with the
issue of extracting information from descriptions.

Theorem 1.1.1: For any regular expressions α, β and γ,
(i) α+β ≡ β+α,
(ii) (α+β)+γ ≡ α+(β+ γ),
(iii) ∅+α ≡ α+∅ ≡ α,
(iv) (αβ)γ ≡ α(βγ),
(v) α(β+γ) ≡ αβ+αγ,
(vi) (α+β)γ ≡ αγ+βγ,
(vii) ε α ≡ α ε ≡ α,
(viii) ∅ α ≡ α ∅ ≡ ∅ ,
(ix) ∅ * ≡ ε,

(x) (α+ε)* ≡ α*,

(xi) α(β α)* ≡ (α β)*α,
(xii) (α*)* ≡ α*,

(xiii) (α* β*)* ≡ (α+β)*,

(xiv) (α β*)* ≡ ε+α(α+β)*.

The proofs of several parts of Theorem 1.1.1 are immediate from the
definitions and the properties of the operations on sets of strings — we omit
these, or leave them to exercises. However, as a general matter, proving the
equivalence of regular expressions can sometimes require careful attention.

36 Formal Models of Computation

As an example of the care necessary, we present the detailed proof of one of
these claims.

Proof of Theorem 1.1.1, part xiii.

We need to establish the set equality µ((α*β*)*) = µ((α+β)*). This
requires that we establish the subset relation in both directions.

Step 1: prove that µ((α* β*)*) ⊆ µ((α+β)*).

Proof: Suppose that x∈µ((α* β*)*). Then for some k≥0, x = x1x2 … xk

where xi∈µ(α * β*), 0≤i≤k. Therefore xi = yizi where yi∈µ(α *) and

zi∈µ(β *). But then yi = yi,1yi,2 … yi,mi
, and zi = zi,1zi,2 … zi,ni

 where

yi,j∈µ(α) and zi,j∈µ(β). Hence x = y1,1y1,2 … y1,m1
z1,1z1,2 … z1,n1

y2,1y2,2 … y2,m2
z2,1z2,2 … z2,n2

 … yk,1yk,2 … yk,mk
zk,1zk,2 … zk,nk

. But

since yi,j∈µ(α +β) and zp,q∈µ(α +β) for all appropriate i,j,p,q, this means

x∈µ((α+β)*).

Step 2: prove that µ((α+β)*) ⊆ µ((α* β*)*).
Proof: Suppose that x∈µ((α+β)*). Then for some k≥0, x = x1x2 … xk

where xi∈µ(α +β), 1≤i≤k. Hence either xi∈µ(α) or xi∈µ(β). But if

xi∈µ(α), then xi = xiε∈µ(α *β*), and if xi∈µ(β), then xi = εxi∈µ(α * β*).

Thus xi∈µ(α * β*) in either case, and so x∈µ ((α* β*)*).

�

As these equivalencies illustrate, a regular expression associates a certain
“pattern” with the strings it describes, and this does not exclude the
possibility of attaching alternative patterns with exactly the same strings.
Properties that may be evident when regarding this set of strings one way
may become less obvious with an alternative pattern.

The equivalencies of Theorem 1.1.1 permit us to avoid burdensome
string level analysis and make some other deductions relatively easily. For

instance, (α*+β)* ≡ ((α*)* β*)* ≡ (α* β*)* ≡ (α+β)* by first applying
(xiii), then (xii), and then (xiii) again. It would be desirable to determine a
list of regular expression equivalencies that we could use as “axioms” to

Regular Expressions and Acceptors 37

prove any other equivalence of interest. Regrettably no finite collection of
equivalencies exists that is adequate for this purpose, although by adding
some inequalities a finite axiom set can be obtained. It is beyond the scope
of our treatment to prove these claims — the interested reader can consult
[Sal 69] and [Koz 94]. We will develop an indirect approach to verify (or
refute) general identities later.

We have seen that the regular expressions provide a means to describe a
variety of languages. We now introduce two other operations on sets of
strings that are helpful in understanding the regular languages as well as
various other language families to be introduced later.

Definition 1.1.4: Given two alphabets Σ and ∆, a homomorphism is a

function h: Σ → ∆*, that is, from letters of the first alphabet to strings over

the second. We immediately extend h to operate as a function on Σ* by
element-wise application — inductively, h(ε) = ε, and for all x=λy with λ∈Σ
and y∈Σ *, h(x) = h(λ)h(y); finally we further extend h to operate as a
function on languages, where for L ⊆ Σ*, h(L) = {h(x) | x∈ L}.

Notice that a homomorphism has a finite description — for each of the
finitely many letters λ∈Σ , we need only identify the string h(λ)∈∆ * and this
completely determines the behavior of h on all strings, and sets of strings.

From its definition, the extension of a homomorphism h: Σ* → ∆* has the
property that h(λ1λ2 … λk) = h(λ1)h(λ2) … h(λk) where λi∈Σ (1≤i≤k), and

so h(xy) = h(x)h(y) for all x,y∈Σ *. Simply stated, a homomorphism allows
the renaming of letters as strings.

Example 1.1.4:

Consider Σ = {0, 1} and ∆ = {a, b} with homomorphism h1: Σ → ∆*

defined by h1(0) = aba, h1(1) = bb. Then h1(101) = bbababb, h1(001) =

abaababb, and h1((0*1)*) = ((aba)*bb)*. For another homomorphism

consider h2: Σ → ∆* defined by h2(0) = aa, h2(1) = ε. Then h2(101) = aa,

h2(001) = aaaa, and h2((0*1)*) = ((aa)*)* = (aa)*.

�

38 Formal Models of Computation

In the preceding example we have begun a convenient (and common)
abuse of the notation. Instead of writing L=µ(α) for a language L and regular
expression α, we just write L=α. Thus we use regular expressions to denote
both themselves and the language that is their meaning and rely on the reader
using context to determine which we intend.

A homomorphism can serve as a precise language description that is
derived from another known language. There is another commonly used
mapping mechanism that generalizes homomorphisms by allowing for a
choice among the strings that replace each letter.

Definition 1.1.5: Given two alphabets Σ and ∆, a substitution is a function

σ: Σ → ℘ (∆*) [for set X, the notation ℘ (X) denotes the collection of all
subsets of X, the power set of X]. Thus each letter is associated with a
(possibly infinite) set of strings, or language. We immediately extend σ to

operate as a function on Σ* by element-wise application — inductively, σ(ε)

= {ε} , and for all x=λy with λ∈Σ and y∈Σ *, σ(x) = σ(λ)•σ(y); then we

further extend σ to operate as a function on languages, where for L ⊆ Σ*, if

L = {x1, x2, x3, … }, then σ(L) = σ(x1) ∪ σ(x2) ∪ σ(x3) ∪ … A substitution
σ is called regular if for each λ∈Σ , σ(λ) is regular.

So with a substitution σ, for each letter λ∈Σ there is a collection of

choices of the strings, σ(λ) ⊆ ∆*, that may replace that letter. The
substitution is described by providing this (finite) association of letters with
languages (but the languages need not be finite). To apply a substitution to a
string, choices for the individual letters of the string are concatenated
together to obtain choices to replace the string; and when the substitution is
applied to a set of strings, the choices constituting the set of results are
obtained by forming the union of the choices for each of the strings in the
set. Since a substitution associates each letter with a language and the
language may be infinite, in general substitutions need not always have finite
descriptions. However, for a regular substitution each language has a finite
description, so we do have finite descriptions of regular substitutions.

Regular Expressions and Acceptors 39

Example 1.1.5:

Let Σ = {0, 1} and ∆ = {a, b, c, d} with substitution σ1: Σ → ℘ (∆*)

defined by σ1(0) = µ(aba), σ1(1) = µ(cd*), where we use regular expressions

to describe the set of choices for each letter. Then σ1(101) = µ(cd*abacd*),

σ1(001) = µ(abaabacd*), and σ1((0*1)*) = µ(((aba)*cd*)*). For another

substitution consider σ2: Σ → ℘ (∆*) defined by σ2(0) = µ((aa)*), σ2(1) =

µ(ε+c). Then σ2(101) = µ((aa)*+(aa)*c+c(aa)*+c(aa)*c), σ2(001) =

µ((aa)*(aa)*(ε+c)) = µ((aa)* (ε+c)), and σ2((0*1)*) = µ((((aa)*)* (ε+c))*) =

µ(((aa)* (ε+c))*). As a last example consider σ3: Σ → ℘ (∆*) defined by

σ3(0) = µ(∅), σ3(1) = µ(a+b). Then σ3(101) = σ3(001) = ∅ , and σ3((0*1)*)

= µ(∅ *(a+b)*) = µ((a+b)*).
�

Notice that for a homomorphism, if we view the string associated with
each letter as a singleton set, we can regard a homomorphism as a
“deterministic” substitution where there is exactly one choice of string for
each letter. In that sense, a homomorphism is just a restricted substitution,
and any result that is true for substitutions also holds for homomorphisms.

Lemma 1.1.2: For each X,Y ⊆ Σ* and each substitution (or homomorphism)

σ: Σ → p(∆*),
(i) σ(X∪ Y) = σ(X) ∪ σ(Y),
(ii) σ(X•Y) = σ(X)•σ(Y), and

(iii) σ(X*) = (σ(X))*.
The proof is left as an exercise.

As the preceding examples suggest, we have

Theorem 1.1.3: For each regular language R ⊆ Σ* and each regular
substitution σ, σ(R) is also regular.
Proof of Theorem 1.1.3.

This proof uses what is sometimes called “structural induction” — since
R is regular, there is some regular expression, say α, with R = µ(α). We use

40 Formal Models of Computation

the structure of α to guide the analysis. In particular, we consider the number
of operations occurring in α.
Anchor (or basis) step — α involves no operations.

In this case α must be either ε, ∅ , or λ∈Σ . But σ({ε}) = {ε}, σ(∅) = ∅ ,
and σ(λ) is assumed to be regular, so σ(R) is regular in each of these cases.

Induction step — assume that σ(µ(α)) is regular for each α involving n or
fewer operations, and consider R = µ(β), where β involves n+1 operations.
Then we must have one of the following three cases:
case (i): β = γ+δ.

Then γ and δ each involve n or fewer operations, and so by the induction
hypothesis, σ(µ(γ)) and σ(µ(δ)) are regular, and since σ(µ(β)) = σ(µ(γ)
∪ µ (δ)) = σ(µ(γ)) ∪ σ(µ(δ)) by the definition of µ and Lemma 1.1.2,
σ(µ(β)) is regular.

case (ii): β = γ•δ.
Then γ and δ each involve n or fewer operations, and so by the induction
hypothesis, σ(µ(γ)) and σ(µ(δ)) are regular, and since σ(µ(β)) =
σ(µ(γ)•µ(δ)) = σ(µ(γ))•σ(µ(δ)) by the definition of µ and Lemma 1.1.2,
σ(µ(β)) is regular.

case (iii): β = γ*.
Then γ involves n or fewer operations, and so by the induction hypothesis,

σ(µ(γ)) is regular, and since σ(µ(β)) = σ(µ(γ)*) = (σ(µ(γ)))* by the
definition of µ and Lemma 1.1.2, σ(µ(β)) is regular.

Hence no matter which case pertains, the induction is extended and so
the result is proven.
�

Corollary 1.1.4: For each regular language R and each homomorphism h,
h(R) is also regular.
Proof of Corollary 1.1.4:

For a homomorphism h, for each λ∈Σ, h(λ) is a single sequence from ∆*

and hence may be regarded as a singleton set and thus is regular. Since h is
therefore a regular substitution, by Theorem 1.1.3, h(R) is regular.
�

The proof of Theorem 1.1.3 is based on the inductive definition of
regular expressions. It is natural to mimic that inductive definition in the

Regular Expressions and Acceptors 41

induction of our proof. The structure of associated regular expressions is
used to organize the analysis. This is an approach that we will frequently
find useful. Notice that the proof of Theorem 1.1.3 reveals an algorithm for
constructing a regular expression for σ(R) from the regular expressions for R
and σ(λ), λ∈Σ . Namely, replace each letter λ occurring in the regular
expression for R with the corresponding regular expression for σ(λ).

We now have several operations which when applied to languages
known to be regular, are bound to yield another regular language. This can
ease the effort needed to show that a language is regular by building on prior
knowledge rather than always being forced to start from scratch.

Example 1.1.6.
Pascal identifiers are required to begin with a letter which then can be

followed by any number of letters and digits. This is immediately seen to be

a regular language since <Pascal identifier> = σ(01*), where σ is the
substitution defined by σ(0) = <letter> and σ(1) = <letter> ∪ <digit>, and
both <letter> and <digit> are finite and hence regular. Therefore by Theorem
1.1.3, the set of all legal Pascal identifiers is a regular language.
Substitutions formally support this abstract approach of thinking of a single
token in place of a whole collection of strings that can actually appear.
�

This section has presented the first “formal model”. This is a formal
means for describing collections of sequences, and it is not yet apparent how
this model should be viewed as describing “computations”. We will see that
regular expressions can be regarded as the syntax that provides a high level
description of certain computational results associated with their meanings.
Facilities sufficient to accomplish corresponding computations will be
elaborated in the next two sections. At this point we have provided only the
first of several steps that are required to complete the picture.

Section 1.2: Finite state acceptors

While some of the properties of the regular languages have begun to emerge,
other things are not so clear at this point. For instance, is the complement of
every regular language regular? An even more basic question is: given a

42 Formal Models of Computation

string x∈Σ * and a regular expression α over Σ, what is the procedure for
determining whether or not x∈µ (α)? For better methods to address such
questions, we now proceed to other means of description of sets of strings.
At this point it will no doubt appear that we are jumping from one formalism
in the previous section, to an entirely different one in this section. From one
perspective that is indeed the case, but it will be revealed in the following
section that a deep underlying similarity exists.

Given any description of a language, one of the basic questions we
naturally expect to be able to answer is whether a given string belongs to the
language or not. This is called the membership question and a language
description is of little practical value if it does not permit us to answer this
question. Regular expressions address how to generate acceptable
sequences, and there is no obvious procedure to follow to answer
membership questions — e.g., does 101 belong to µ(ε+0+1+10 + (01 + 100

+ (00+11+101)(0+1)) (0+1)*)? The models developed in this section are
especially suited to answering membership questions, and turn out to be
useful in many other ways as well.

The finite state acceptor model we develop now can be thought of as an
abstraction of a simple computing device that has only a fixed internal store
(or memory), and responds to input with a single binary output — accept or
reject. The input consists of a sequence of symbols that is read and processed
one symbol at a time. We wish to describe behavior where the reaction to an
individual input symbol may depend on prior input as well as the current
symbol itself, so the behavior of the model incorporates internal “memory”.
We adopt a high level of abstraction in the model so that the analysis is not
sensitive to the details of any particular computing system. The internal
storage is understood to be an amalgamation of some finite (but unrestricted)
number of “configurations”. At this first stage, no other resource is available
in the model. Such a model probably appears to be quite limited, and indeed
there are serious limitations. The finite state models we develop in this
section will recur repeatedly in later more complicated models as a basic sub
mechanism. So while the limitations will disappear, this model will persist.
Also, we will find in Chapter 3 that having only a single binary response to
input sequences is not nearly as limiting as it may initially seem.

Regular Expressions and Acceptors 43

Definition 1.2.1: A deterministic transition system (DTS) is a triple, T =
(S, Σ, δ), where S, the states, and Σ, the input alphabet, are finite non-
empty sets, and δ is a function, δ: S×Σ → S, the next-state function.

A transition system captures the way the configurations of the internal
store of a computing device change when a single input symbol is presented
to it. The internal memory (the states) permit the model to retain information
about past input, and this may effect the reaction to later input symbols. To
capture this, we need to describe how the transitions cascade for a sequence
of inputs.

Definition 1.2.2: If T = (S, Σ, δ) is a deterministic transition system, then the

transition function, δ*: S×Σ* → S, is defined (inductively) for all s∈ S by:

δ*(s, ε) = s, and for all x∈Σ * and λ∈Σ , δ*(s,xλ) = δ(δ*(s, x), λ).

Thus if there is no input, the state does not change, and the state
transitions for non-null sequences of input symbols are simply determined by
the sequential, letter-by-letter, application of the next-state function. The

common notational convention is to simply write δ when either δ or δ* is
really intended — the reader must be alert to the context to determine which
is meant (in programming language parlance, we are overloading the
function symbol δ with both meanings). Since for the common domain of the

two functions, δ*(s, λ) = δ(s, λ), the possibility of confusion with this
convention is negligible.

Given the state and input sets, to completely describe a transition system,
we need only describe the next-state function. Since the domain of this
function is finite, the value of the function for each argument pair can be
given in a finite list. Once this is specified, the transitions for all input
sequences of arbitrary length are determined.

Example 1.2.1.
Take S = {s0, s1, s2}, and Σ = {0, 1}. We define the next-state function

for this transition system by a table that lists the result for each combination
of state and symbol in tabular form below.

44 Formal Models of Computation

δ s0 s1 s2

0 s0 s2 s2
1 s1 s1 s2

This table records the (six) individual state changes: δ(s0, 0) = s0, δ(s0, 1)

= s1, δ(s1, 0) = s2, δ(s1, 1) = s1, δ(s2, 0) = s2, δ(s2, 1) = s2.

Our preferred way of presenting transition system examples is by means
of state diagrams — the states are represented as nodes in a directed graph,
the edges are determined by δ and labeled with the input associated with that
state change. For the transition system here we have the state diagram

1

0

0

1 0,1

s s s
0 1 2

�

State diagrams are helpful presentations of transition systems. The
crucial thing for transition systems is how the states change, and this can be
seen clearly from the state diagram (at least for moderate sized examples). It
should be noted that the edges in the state diagram record the next-state

function (δ). The transition function (δ*) is described by the paths (i.e.,
sequences of edges) of the diagram. The analysis of transition systems
generally revolves around determining (global) path properties from the
(local) edge information.

Definition 1.2.3: A deterministic finite acceptor (DFA) A is a 5-tuple A =
(S, Σ, δ, s0, R), where (S, Σ, δ) is a deterministic transition system, s0∈ S is

the start state, and R ⊆ S is the set of recognizing (or accepting) states.

The language recognized (or accepted) by A is L(A) = {x∈Σ * | δ(s0,

x)∈ R}. A language L ⊆ Σ* is DFA-recognizable if there exists a DFA A so
that L = L(A).

Regular Expressions and Acceptors 45

Note that since all the sets involved in a DFA are finite, a DFA A
provides a finite description of its language, L(A). The cases of primary
interest are when L(A) is not finite — then we have a finite description of an
infinite object and we must base our understanding of this object entirely on
this description.

Example 1.2.2.
Consider the transition system of Example 1.2.1. If we additionally

identify s0 as the start state, and R={s1} as the set of accepting states, then

we have an acceptor, say A, that recognizes the language L(A) = µ(0*11*).

To verify that A accepts exactly 0*11*, we have to construct a set equality

argument. We need to observe that every string 0p1q (p≥0, q≥1) in 0*11* is

recognized by A — δ(s0, 0p1q) = δ(s0, 1q) = δ(s1, 1q-1) = s1. Also we need

to observe that every string not in 0*11* is rejected by A — for a string not

to be in 0*11*, either it has no '1's (i.e., 0p, p≥0), or it has a '0' following a '1'
(i.e., 0p1q0x, where p≥0, q≥1, and x∈ (0+1)*); but δ(s0, 0p) = s0, and δ(s0,

0p1q0x) = δ(s1, 1q-10x) = δ(s1, 0x) = δ(s2, x) = s2 so both kinds of strings are

rejected.

We augment state diagrams for transition systems to denote the start
state by an unattached edge pointing to it, and we denote the accepting states
by double circle nodes. Thus A is depicted by the state diagram

1

0

0

1 0,1

s s0 2
s
1

�

The DFA model provides an abstraction for computing systems where
the input is processed letter by letter. The input source could be a keyboard
and each keystroke produces one of the letters, or the input source might be a
communication line where the characters arrive sequentially one by one, or
perhaps a “tape” device of some type which has a unidirectional (forward)
movement. After the last letter is input, a console light (or some comparable

46 Formal Models of Computation

binary signal) will either be on or off to show acceptance or rejection. As a
consequence of the abstraction, the DFA analysis techniques will apply to a
wide variety of realizations. This model does not yet conform to realistic
computing systems, but it will be a useful beginning.

Clearly the DFA-recognizable languages admit a straight-forward
procedure for answering the membership question. Given an arbitrary
candidate string, all we need to do is simulate the computation of the DFA
on the string, and see whether the ending state is accepting or not. This can
be done with a table driven algorithm that embeds the state transition table
and accepting state list, records current state, and does letter by letter table
look-up. Clearly such an algorithm requires only a fixed amount of storage
(not varying with the length of the input), and time that is directly
proportional to (i.e., linear in) the input length.

Example 1.2.3
In the three DFAs provided below, the reader should verify the claims

about the strings that are recognized (and rejected).

L(A1) = all sequences with an odd number of '0's

s s

01

10

A 1

0 1

L(A2) = all sequences containing subsequence '101'

s s s s

A

0 1 2 3

2

0,1

1

0

0

0

1

1

Regular Expressions and Acceptors 47

L(A3) = all sequences ending with subsequence '101'

s s s s

A

0 1 2 3

3

0

1

1

0
0

1
0

1

�

As is already apparent, and as we will repeatedly observe as we go
along, the cycle structure of an acceptor is a key factor in its descriptive
power. On the other hand, the cycle structure is also the critical complication
in understanding these devices. In fact, this is an inevitable characteristic of
all methods of describing computations, (automata or programming
languages) — the features that most enhance descriptive power are
invariably associated with greater conceptual complication.

Theorem 1.2.1: the complement of each DFA-recognizable language is also
DFA-recognizable.
Proof:

This proof is a simple construction. Given L = L(A), where A = (S, Σ, δ,

s0, R) is a DFA, we define DFA B = (S, Σ, δ, s0, S−R). Then for any x∈Σ *,

if δ(s0, x)∈ R, then δ(s0, x)∉ S−R, and conversely. Hence clearly L(B) =

¬L(A) = Σ*−L(A).
�

Even though Theorem 1.2.1 is very simple technically, it provides a
useful way of approaching languages that are described negatively.
Providing a description of what is not a string of interest requires that a
deduction be made to positively identify strings. Theorem 1.2.1 shows that
this is a trivial transformation for DFAs. It is much less clear for regular
expressions. We will later see mechanisms for which negative descriptions
change the character of the language drastically.

48 Formal Models of Computation

In the next section we will show that the DFA-recognizable languages
are synonymous with the regular languages. To establish this equivalence,
we need to develop some additional means of analysis. The models we
develop next not only provide these additions, but also introduce challenging
concepts crucial to more complex later models in this simpler setting.

Definition 1.2.4: A non-deterministic transition system (NTS) is a triple, T
= (S, Σ, δ), where S, the states, and Σ, the input alphabet, are finite non-
empty sets, and δ is a function, δ: S×Σ → ℘ (S), the next-state function [for
set X, the notation ℘ (X) denotes the collection of all subsets of X, the power
set of X].

A non-deterministic transition system does not uniquely prescribe
configuration changes. Instead a collection of possible outcomes is given
with the understanding that at any given step of a computation one of these
state changes will occur, but the particular possibility that transpires at any
moment varies in an undetermined manner. The internal memory (the states)
still permit the model to retain information about past input that may effect
the reaction to later input symbols. To capture this, we again need to
describe how the uncertain transitions cascade for a sequence of inputs.

Definition 1.2.5: If T = (S, Σ, δ) is a non-deterministic transition system, then

the transition function, δ*: S×Σ* → ℘ (S), is defined inductively for all

s∈ S by: δ*(s, ε) = {s}, and for all x∈Σ * and λ∈Σ , δ*(s, xλ) = ∪
t∈δ *(s,x)

 δ(t,λ).

As in the deterministic case, we will use δ to mean both δ and δ* with
the interpretation to be determined by the context. As in the deterministic

case, these two functions agree on their common domain (δ*(s, λ) = δ(s, λ))
so there is no real danger of confusion. The transition function for an NTS
yields the set of all the possible state outcomes for a given input sequence.
Usually we envision this as encompassing a potentially large set of possible
outcomes. But, in fact, there may always be exactly one possible outcome —
in this case we effectively have a deterministic transition system, so non-
deterministic automata provide deterministic automata as a special case. That
is, every DTS can be viewed as a NTS.

Regular Expressions and Acceptors 49

Furthermore, one of the possible sets of next states in an NTS is ∅ ,
none! This provides an NTS with the ability to model a new behavior,
“blocking” or stopping part way through an input sequence. Such behavior
cannot be modeled with a DTS which must completely process every input
sequence.

So a non-deterministic device leaves some uncertainty about how it will
react to any given input. This could reflect physical device characteristics
that are beyond our design control such as the temperature or humidity of the
environment in which the device is placed. Non-deterministic devices may
thus appear to be unrealistic or unhelpful models of computing systems, but
we will indicate a little later in this section some important practical
applications of these models. Irrespective of whether it is realistic, non-
determinism is a valuable conceptual tool.

The concept of non-determinism is rather elusive. Computation
descriptions where we do not say exactly what will happen next seem less
familiar in our experience. But if, for example, we regard it as allowing us to
avoid the over-specification of a forced choice between an arbitrary order in
which to react to the occurrence of several “simultaneous” events when
order is immaterial to the desired outcome, it may seem more natural. Our
main interest is to use non-determinism as an analysis aid to ease reasoning
about deterministic devices! We next see how this can be accomplished.

Definition 1.2.6: A non-deterministic finite acceptor (NFA) A is a 5-tuple,
A = (S, Σ, δ, s0, R), where (S, Σ, δ) is a non-deterministic transition system,

s0∈ S is the start state, and R ⊆ S is the set of recognizing (or accepting)

states. The language recognized (or accepted) by A is L(A) = {x∈Σ * | δ(s0,

x)∩R≠∅ }. A language L ⊆ Σ* is NFA-recognizable if there exists a NFA A
so that L = L(A).

For an NFA A as in Definition 1.2.6 and x∈Σ *, say x=λ1λ2 … λk (k≥0)

with λi∈Σ (1≤i≤k), we say x has a run s0, s1, … , sk in A if s1∈δ (s0, λ1),

s2∈δ (s1, λ2), ... , sk∈δ (sk-1, λk). A run is recognizing (or accepting) if

sk∈ R.

50 Formal Models of Computation

While the NFA model includes the DFA model as a special case and is
still a finite description of its language, it is a distinctly different model. Not
only is the NFA model different, this difference leads to a new recognition

criterion. For each x∈Σ * there is exactly one run in a DFA, but in an NFA
there may be a set of runs reflected in δ(s0, x) — if one or more of these

states is a recognizing state, then x is “recognized”; x is rejected only if no
run is recognizing. So there are many possible behaviors associated with a
single input sequence, and they may be both accepting and rejecting. Even
one accepting outcome is taken to be enough for the sequence to be
categorized as “recognized”. Furthermore, an input sequence can be rejected
either by leading only to non-recognizing states, or by not leading to any
states at all (i.e., by having no runs) — that is by blocking, an entirely new
computational behavior from that provided in the DFA model.

The various possible transitions of an NTS for an input are not in any
way distinguished from one another — each is simply one of the conceivable
outcomes. A refinement of this model assigns a probability to each of the
possible next states at each step. Such devices are referred to as
“probabilistic automata”, and the likelihood of an outcome is used in
characterizing behavior. The analysis of this model is technically more
difficult and goes beyond the scope of this book — the interested reader can
consult the book by Paz[Paz 71].

Example 1.2.4.
This first example of an NFA has Σ = {0,1} and accepts precisely those

sequences whose last two characters are '0'. We take states S = {s0, s1, s2}

with s0 as start state, and F = {s2}. Then the next state function is given by:

δ s0 s1 s2

0 {s0, s1} {s2} ∅
1 {s0} ∅ ∅

As in the case of DFAs, we normally will prefer to use state diagrams to
present examples. For this example we have

0,1

0 0s s s
0 1 2

Regular Expressions and Acceptors 51

The diagram conventions used for NFAs are basically the same as those
used previously for DFAs. However, an input symbol may label several
edges (or none) from the same node in the non-deterministic case, but this is
the only difference.

As clearly seen in the state diagram for this example, every accepting run
requires that the last two symbols of the input must be '00'. Also, every such
sequence clearly has an accepting run consisting of the transition from s0 to

itself for every symbol except the last two (of course, options also permit
early transitions to s1 and s2 and subsequent blocking). In this example, non-

determinism is used in every state — at s0 there are two possible next-states

when the input is '0', and in states s1 and s2 the absence of next-states can

lead to rejection by blocking (i.e., no runs).
�

While the NFA model is apparently more complex than the DFA model,
it may be that an NFA description is simpler and easier to provide than a
DFA description. This can be seen in our first NFA example above — to be
convinced of this, the reader should construct a DFA for the language of
Example 1.2.4 (see Exercise 1.16). However, this does not imply that NFA
examples are always easy to understand. In general, since there are more
computational behaviors possible than with DFAs, NFAs may be even more
difficult to understand. But quite often it turns out the other way.

Example 1.2.5.
The NFA below has four states, and the primary use of non-determinism

occurs in the start state. With a little reflection, it will hopefully be clear to
the reader what constitutes the recognized sequences.

Then for input 0100 we have the following “tree” of run possibilities.

s

s s

s

0

1

2

3

0

0

1

1
0,1

0,1

52 Formal Models of Computation

Hence there are three runs for input 0100 (the others block before
completion) with one accepting and two rejecting, and this means that 0100
is accepted.
�

For a variety of reasons, it is occasionally of interest to refer to the
connectivity structure of transition systems (e.g., see Example 1.2.6). Before
proceeding with the other recognition models, we introduce three useful
terms.

Definition 1.2.7: A state t of a transition system is said to be reachable from

state s if there is x∈Σ * so that δ(s, x)=t (or t∈δ (s, x) in the non-deterministic
case). A state is called a generator if every state is reachable from it. A
transition system is called strongly connected if every state is a generator.

Among the examples we have presented so far, it can be seen that in
Example 1.2.1, s0 is a generator, but s1 and s2 are not. In Example 1.2.3, A1
and A3 are strongly connected, but A2 is not. Note that for acceptors, there

would be no loss of generality in recognition capacity if we were to assume
that the start state is always a generator since deleting its unreachable states
cannot effect acceptance. However, there would be no great gain either and
we would sacrifice some flexibility, so we do not make such a blanket
assumption (but this is the case in all our examples so far).

While we can model more computational behaviors with NFAs, it turns
out that their expressive capacity is no greater than that of DFAs in the sense

reject

reject

acceptblock

block

0

0

0

0

0

0

0

1

1

s

s

s

s

s

s

s

s

s

s
0

0

1

0

2

0

1

0

1

3

Regular Expressions and Acceptors 53

of the theorem below. This result is based on the observation that at any
point in a non-deterministic computation, there are only finitely many
possible state outcomes so we can deterministically keep track of these
possibilities.

Theorem 1.2.2: Each NFA-recognizable language is DFA-recognizable.
Proof:

This is a proof by construction. For a given NFA, we demonstrate the
existence of an equivalent DFA by explicitly providing its definition. Let A
= (S, Σ, δA, s0, F) be an NFA. We define the DFA B = (T, Σ, δB, t0, G),

where T = ℘ (S), t0 = {s0}, δB(X, λ) =
s∈ X
∪ δA(s, λ) for each X ⊆ S and

λ∈Σ , and G = {X⊆ S | X∩F≠∅ }. Now clearly B is a well-defined DFA — its
states are the subsets of S, and a unique next-state (subset) is determined for
each letter in Σ. This is another instance where the abstraction of our models
is helpful — states of a DFA may be anything at all, so having states that
consist of subsets of states from another machine is permitted.

Claim: for each x∈Σ *, δB(t0, x) = δA(s0, x) and hence L(B) = L(A).

Proof of claim:
The proof is an induction argument on len(x).

Anchor step: len(x)=0, or x=ε.
The claim follows immediately from the NFA and DFA definitions.

Induction step: assume the claim is true for all x with len(x)=n and consider
xλ with λ∈Σ and len(xλ)=n+1. Then

δB(t0, xλ)

= δB(δB(t0, x), λ) by the definition of a DFA

= δB(δA(s0, x), λ) by the induction hypothesis

=
s∈δ A(s0, x)

∪ δA(s, λ) by the definition of B

= δA(s0, xλ) by the definition of an NFA.

This extends the induction, proving the claim. Since the claim verifies
the correctness of the construction, the theorem is proven. While the claim is
all we require to prove the theorem, it may be noted that the “simulation” of

54 Formal Models of Computation

NFA A that is provided by DFA B is perfect — the equality shown in the
claim is true for every state of A, not just the start state.
�

Example 1.2.6.
We illustrate the construction in the proof of Theorem 1.2.2 for the NFA

of Example 1.2.4. Since the NFA in that example has 3 states, we have 8
subsets that serve as the states of the DFA. The resulting machine is given in
the state diagram

s s

s

s s

s s

s

ss s s ∅

0 0 2

0 1 2 0 1

1 2

1 2

1

1

0

0

1

1
0

0

1 0,1

0

1

0,10

Notice that only 3 of the 8 states in this DFA (i.e., {s0}, {s0, s1}, and

{s0, s1, s2}) are essential (i.e., reachable from the start state), and the others

could be deleted without changing the language accepted.
�

The construction used in the proof of Theorem 1.2.2 is known as the
“power set” construction. Analogous techniques have been found to be
valuable in a number of other areas of theoretical computer science. By this
construction, we see that we can always replace an N state NFA by a 2N

state DFA. Hence while NFAs and DFAs have the same expressive capacity,
this proof suggests that NFAs may provide a substantial economy of
expression. Of course, this proof does not foreclose the possibility that a
DFA with fewer than 2N states could be sufficient. In fact, in many cases
fewer states will suffice, as seen in Example 1.2.6 — our proof guarantees a
correct DFA, not an economical one. However, we will see later that this is
the best upper bound possible and that there are indeed cases that require this
exponential state explosion when going from an NFA to a DFA. The
succinctness that can be obtained with an NFA can make it much more

Regular Expressions and Acceptors 55

understandable than the corresponding DFA so there is a significant benefit
associated with the added complexity of NFAs even though expressive
power has not been increased.

Note that while we do not explicitly present an algorithm for
transforming an NFA to a DFA, it is clear that all elements for this have been
outlined in our proof. For practical purposes, it may also be noted that one
typically does not require all 2N subsets in a corresponding DFA — only
those reachable from the start state will actually be relevant, and if one
“builds” a DFA beginning with the start state and only incorporating those
subsets that are reached, the construction is usually substantially reduced.
Instances like Example 1.2.6 are common, where fewer states than the upper
bound suffice.

There is one more extension of the finite state model that will be useful.
This extends the NFA model and provides for modeling still another
computational behavior.

Definition 1.2.8: A null-move (or ε-move) non-deterministic transition
system (ε-NTS) is a triple, T = (S, Σ, δ), where S, the states, and Σ, the
input alphabet, are finite non-empty sets, and δ is a function, δ:
S×(Σ∪ {ε}) → ℘ (S), the next-state function.

So an ε-NTS is non-deterministic, and in addition provides the
possibility of a state transition even when there is no input (i.e., the input is
ε). These ε-moves can be thought of as “spontaneous transitions” that the
device may make without external stimulus. This kind of behavior may seem
rather bizarre from the perspective of our discussion to this point. However,
there are computational circumstances where this behavior is both natural
and essential. In constructing models of concurrent processes with shared
variables, one process description does not include all the information for its
potential state changes. Even if a process does nothing, its state may be
changed by another process writing into a shared variable. In this context an
ε-transition indicates that a shared variable is “unlocked” and available for
writing by another process, and the particular ε-move will depend on the
action of a cooperating process. The interested reader could consult [Hen 88]
for a development along these lines. Our interest here will be to use this
behavior to further ease some of our upcoming analysis, and to set the stage

56 Formal Models of Computation

for the push-down automata considered in a later chapter that utilize this
ability to run without consuming input.

The ε-moves significantly complicate the ways in which transitions
cascade. So before we define how an ε-NTS responds to a sequence of
inputs, we must address the cascading of ε-moves.

Definition 1.2.9: for state s of an ε-NTS, ε-closure(s) is a set of states
defined inductively by:

(i) s∈ε -closure(s),
(ii) if t∈ε -closure(s) and u∈δ (t, ε), then u∈ε -closure(s),
(iii) nothing belongs to the ε-closure(s) unless it follows from finitely

many applications of (i) and (ii).

Also, for a set of states T, ε-closure(T) = s∈ T
∪ ε-closure(s).

The set ε-closure(s) includes s plus all the states that are reachable from s
using repeated ε-moves. A transition from s to any of these states may
always occur “spontaneously” (i.e., without reading any input). With this
spontaneous behavior carefully defined, we can now define the extension of
the next-state function of an ε-NTS to transitions for input sequences.

Definition 1.2.10: For ε-NTS T = (S, Σ, δ), the transition function δ*:

S×Σ* → ℘ (S) is defined inductively for each s∈ S by:

(i) δ*(s, ε) = ε-closure(s),

(ii) for x∈Σ * and λ∈Σ , δ*(s, xλ) = ε-closure(∪
t∈δ *(s,x)

 δ(t, λ)).

As with DTS and NTS, we use the symbol δ to denote both δ and δ*

with context serving to distinguish the intended function. However, in this

case there is some chance of confusion since δ and δ* may differ on their

common domain — δ(s, λ) ⊆ δ*(s, λ) but they need not be equal. If clause
(ii) in Definition 1.2.10 is specialized with x = ε, then we have

δ*(s, λ) = ε-closure(∪
t∈ε -closure(s)

 δ(t, λ)) — ε-moves are permitted both

before and after the letter λ is read.

Regular Expressions and Acceptors 57

Intuitively, when there are ε-moves, the set of possible state outcomes
for an input sequence allows an arbitrary number of spontaneous transitions
before and after each letter is processed. Thus

δ*(s, λ1) = ε-closure({t | ∃ r∈ε -closure(s)) with t∈δ (r, λ1) }),

δ*(s, λ1λ2) = ε-closure({t | ∃ r∈δ *(s, λ1) with t∈δ (r, λ2)})

etc.

Example 1.2.7.
For the simple ε-NTS below we have: ε-closure(a) = {a, b}, ε-closure(b)

= {b}, and ε-closure(c) = {a, b, c}. Therefore inputs of length one (letters)
incorporate numerous possible ε-moves into the determination of the

transitions. So, for instance, δ*(a, 1) = {a, b, c} since starting from state a
• state a is reached by: ε-move, 1-move, ε-move;
• state b is reached by: ε-move, 1-move, ε-move, ε-move;
• state c is reached by: ε-move, 1-move.

ε,0

1

ε

a b

c

�

Definition 1.2.11: A null-move non-deterministic finite acceptor (ε-NFA)
A is a 5-tuple, A = (S, Σ, δ, s0, R), where (S, Σ, δ) is a null-move non-

deterministic transition system, s0∈ S is the start state, and R ⊆ S is the set

of recognizing (or accepting) states. The language recognized (or

accepted) by A is L(A) = {x∈Σ * | δ(s0, x)∩R ≠∅ }. A language L ⊆ Σ* is ε-

NFA-recognizable if there exists an ε-NFA A so that L = L(A).

Of course, every NFA is an ε-NFA, simply one where the set of ε-moves
happens to be empty in every case (i.e., for all s, δ(s, ε) = ∅). Hence we have
properly extended the computations that can be modeled. But while we again
have a proper extension of the computational behaviors that can be modeled,
this still does not increase the recognition capacity as we next prove.

58 Formal Models of Computation

Lemma 1.2.3: if X and Y are any subset of states of an ε-NFA, then
(a) ε-closure(ε-closure(X)) = ε-closure(X), and
(b) ε-closure(X ∪ Y) = ε-closure(X) ∪ ε -closure(Y).

The proof of this lemma is left as an exercise.

Theorem 1.2.4: Each ε-NFA-recognizable language is NFA-recognizable.
Proof:

This proof is by construction. Given an ε-NFA A = (S, Σ, δA, s0, RA), we

provide an explicit construction to show the existence of an NFA B so that

L(A) = L(B). Define B = (S, Σ, δB, s0, RB), where δB(s, λ) = δ*
A(s, λ) for all

s∈ S and λ∈Σ , and

RB =

 RA∪ {s0} -- if ε-closure(s0)∩RA≠∅

RA -- otherwise. .

The idea of this construction is that the next-state function of B is
expanded to include all the states that can result from ε-moves in A into the
possible state outcomes for each individual letter. Then the same transitions
are possible in B without the ε-moves. Clearly by the definition of RB,

ε∈ L(A) if and only if ε∈ L(B); if ε-closure(s0)∩RA≠∅ , then adding s0 as an

accepting state would not change the language recognized. For non-null
strings we make the

Claim: for each s∈ S and x∈Σ * with len(x)≥1, δ*
A(s, x)= δ*

B(s, x), and hence

L(A) = L(B).
Proof of claim:

The proof of this claim is by induction on len(x).
Anchor step: for len(x) = 1, x=λ∈Σ and the claim follows immediately from
the definition of δB.

Induction step: assume the claim is true for all x with len(x) = n and consider
an input of length n+1, say xλ, where λ∈Σ . Then

δ*
B(s, xλ)

= ∪
t∈δ *B(s,x) δB(t, λ) by the definition of NFA transitions

= ∪
t∈δ *A(s,x) δB(t, λ) by the induction hypothesis

Regular Expressions and Acceptors 59

= ∪
t∈δ *A(s,x) δ

*
A(t, λ) by the definition of δB

= ∪
t∈δ *A(s,x) ε-closure(δ*

A(t, λ)) by Lemma 1.2.3(a) and δ*
A(t, λ)

= ε-closure(∪
t∈δ *A(s,x) δ

*
A(t, λ)) by Lemma 1.2.3(b)

= δ*
A(s, xλ) by the definition of ε-NFA.

This extends the induction proving the claim, and completing the proof
of Theorem 1.2.4.
�

We see in the proof of Theorem 1.2.4 that an ε-NFA is equivalent to an
ordinary NFA with the same number of states, so there is not the economy of
states as in the NFA versus DFA case. However, the number of atomic
transitions (i.e., edges) defined in the NFA may expand greatly over those in
the ε-NFA. Consequently, although there is no increase in the recognition
capacity, ε-NFAs may be helpful in achieving brevity and clarity.

Example 1.2.8.
If we follow the construction in the proof of Theorem 1.2.4 for the

deceptively simple ε-NFA A (see Example 1.2.7), we obtain the NFA B as
shown below.

1

0,1

1

1

1

0,1

1

11

B

a b

c

A

1

a b

c
ε

ε,0

60 Formal Models of Computation

Is it clear that these two acceptors recognize the same language? What is
this language?
�

This section has developed a collection of basic models of computation.
The computations are very simple — process a string symbol by symbol and
determine whether or not it belongs to a designated language. We saw that
DFAs, NFAs and ε-NFAs all have the same recognition capacity, even
though each successive mechanism manifests additional computational
behavior (e.g., blocking, and spontaneous state change). Non-determinism
might have initially seemed artificial and somewhat mysterious, but the
natural DFA simulation removes the perplexity. DFAs have the simplest

theoretical basis, but the explosion from an N-state NFA to a 2N-state DFA
can make DFAs comparatively impractical. We will see that ε-NFAs aid in
the systematic construction of acceptors, but the ε-moves can lead to subtle
complication, and are a difficulty in algorithm realization. Through
implementations that simulate the power set construction, NFAs have the
greatest accepted practical roles in search string processors in text editors,
lexical analyzers in compilers, and for modeling communication protocols.

Section 1.3: Equality of regular expressions and acceptors

In the previous section we have seen a series of acceptor mechanisms that
provide for modeling various computational phenomena. But all three of
them achieve exactly the same expressive capacity when measured by the
sets of sequences that can be recognized. The symbol by symbol processing
of one specific string by the recognizer models contrasts with the approach
of generating the set of member sequences provided by regular expressions
of section 1. In this section we demonstrate that the descriptive capacity of
these recognition models is exactly the same as that of the regular
expressions.

Theorem 1.3.1: Every DFA-recognizable language is regular.
Proof:

This is a constructive proof where we show how to form a regular
expression that describes exactly the recognizable sequences. Without loss of
generality, we assume that DFA A = (S, Σ, δ, s1, R), where S = {s1, s2, … ,

Regular Expressions and Acceptors 61

sn} for some n≥1. That is, we arbitrarily assign some sequential order to the

states of A. This ordering will provide the basis for an inductive
development of a regular expression. While any ordering will do, different
orderings will usually result in different (but equivalent) regular expressions.

For x∈Σ *, we will say that the transition δ(sp, x) = sq “passes through” state

sr if for some y,z∈Σ +, x = yz and δ(sp, y) = sr. Informally, an input sequence

“passes through” only the intermediate states of the run, not the beginning

and ending states. For 1≤p,q≤n and 0≤r≤n we define a collection of sets L
r

pq

so that x∈ L
r

pq if and only if x takes sp to sq without “passing through” any

state sm with m > r. Formally

L
r

pq = {x∈Σ * | δ(sp, x) = sq and if x=yz with y,z∈Σ + and δ(sp, y) = sm,

then m ≤ r}.

Then L
n
pq = {x∈Σ * | δ(sp, x) = sq } and L(A) = ∪

sq∈ R L
n

1q. We need only

show that each of the languages L
r

pq is regular, and regular expressions for

them are immediately combined to obtain one for L(A). Strings in L
0

pq pass

through no states, and hence these languages are easily determined. Thus

L
0

pq =

 {λ∈Σ | δ(sp, λ) = sq} if p≠q

 {ε}∪ {λ∈Σ | δ(sp, λ) = sq} if p=q .

Since these are finite (or empty) sets, they are regular and have simple
regular expressions. And for r>0 we have the following fundamental
identity:

(§) L
r

pq = L
r-1

pq ∪ L
r-1

pr (L
r-1

rr) * L
r-1

rq .

The identity (§) can be readily verified. The sequences in L
r

pq determine

transitions from sp to sq which pass only through states numbered r or

smaller. Now if such a sequence does not pass through sr at all, then it

belongs to L
r-1

pq. If a sequence x∈ L
r

pq does pass through sr one or more

62 Formal Models of Computation

times, then we identify the first and last times that x passes through sr, and

x=uvw where δ(sp, u) = sr and this is the first encounter, δ(sr, w) = sq and

this is the last encounter (and could be the same as the first), and δ(sr,v) = sr.

Clearly u∈ L
r-1

pr and w∈ L
r-1

rq since sr is not passed through by these

sequences. Also v may repeatedly (zero or more times) pass through sr, but

the subsequence between one encounter and the next is in L
r-1

rr , so v∈ (L
r-1

rr)*.

Clearly (§) provides the essence of an induction which shows that all the

languages L
r

pq are regular, and in fact, we can systematically develop regular

expressions from those for L
0

pq using (§).

�

In fact, the proof strategy used in this theorem effectively provides a
systematic algorithm for transforming a DFA description into a regular
expression description of the same language. It is informative to apply the
method of proof of Theorem 1.2.1 to a specific DFA to re-express the
language of the DFA by a regular expression. It will be noted that while this
is an infallible method of obtaining a regular expression from a DFA, it
usually yields a highly “non-optimal” (i.e., overly complex) result.

Example 1.3.1.

s

s s

1

2 3

0

1
1

0

0,1

L(A) = L
13

3

Just from inspection of the state diagram, we see that L
0

13
 = µ(∅), and

L
0

11
 = µ(ε+0). Therefore from (§) L

1

13
 = L

0

13
 ∪ L

0

11
 (L

0

11
)* L

0

13
 = µ(∅ +

(ε+0)(ε+0)* ∅). This already illustrates the disadvantage of following this
procedure in a completely mechanical way. The regular expression ∅ +

Regular Expressions and Acceptors 63

(ε+0) (ε+0)* ∅ correctly describes L
1

13
, however (∅ + (ε+0)(ε+0)* ∅) ≡ ∅ ,

and ∅ much more succinctly and clearly indicates the appropriate result (it’s
clear from the state diagram that there is no transition from s1 to s3 that

passes only through s1). Such obvious simplifications should be made when

applying (§) to specific examples, and even then excessively messy results
are usually produced.

Similarly from (§) L
2

13
 = L

1

13
 ∪ L

1

12
 (L

1

22
)* L

1

23
 , and since we can

readily determine that L
1

12
 = µ(0*1), L

1

22
 = µ(ε), and L

1

23
 = µ(0+1) we have

that L
2

13
 = µ(0*1(0+1)).

The reader should complete this example (see Exercise 1.46) to obtain a

regular expression for L
3

13
 = L(A) and take some time to compare these two

descriptions.
�

Our first result in this section has shown us that the regular expression
mechanism is at least powerful enough to express any language that can be
described by any acceptor. But in fact, we next show that the converse result
is also true so that these two quite different mechanisms have equivalent
descriptive capacity.

Theorem 1.3.2: Each regular language is ε-NFA-recognizable, and hence by
Theorems 1.2.4 and 1.2.1 is also NFA-recognizable and DFA-recognizable.
In fact, we prove that the ε-NFA can always be chosen to have a single
accepting state.
Proof:

This proof is again a structural induction proof. Since for any regular
language, we can rely on a regular expression description, and we use the
structure of the regular expression to guide the analysis. In particular, let L =
µ(α) for regular expression α, and the induction is on the number of
operations in description α. Based on α, we define ε-NFA A.
Anchor step: α contains no operations

subcase 1: α = ε

64 Formal Models of Computation

In this case we can recognize L = {ε} with one state that is both initial
and final, and where all next-states are null. A = ({s0}, Σ, δ, s0, {s0}),

where δ(s0, λ) = ∅ for all λ∈Σ .

subcase 2: α = ∅
In this case we can recognize L = ∅ with a two state ε-NFA — one
initial state, one final state, and no transitions. A = ({s0, s1}, Σ, δ, s0,

{s1}), where δ(si, λ) = ∅ for all λ∈Σ , and i=1,2.

subcase 3: α = λ∈Σ
In this case we can recognize L = {λ} with a two state ε-NFA — one
initial state, one final state, and one transition. A = ({s0, s1}, Σ, δ, s0,

{s1}), where δ(s0, λ) = {s1}, and δ(si, λ') = ∅ for all λ'∈ Σ, λ'+λ,

otherwise.
Induction step: assume the theorem is true for all regular expressions with
n≥0 or fewer operations, and consider regular expression α with n+1
operations.

subcase 1: α = α 1+ α2

So α1 and α2 each involve n or fewer regular expression operations.

Thus, the induction hypothesis implies that there exist ε-NFAs Ai with

µ(αi) = L(Ai), i=1,2. We easily stitch together A1 and A2 as

submachines to create an acceptor for µ(α). We just enable ε-moves to
start (non-deterministically) either A1 or A2 and when one of these

submachines finishes (i.e., enters one of its accept states), it has an added
ε-move option to exit to the accept state for the top-level. Formally, let

Ai = (Si, Σ, δi, s0
i , {ri}) for i=1,2, and without loss of generality assume

that S1∩ S2=∅ . Then introduce new abstract symbols {s0, r} not

occurring in A1 or A2 and define A = ({s0, r} ∪ S1 ∪ S2, Σ, δ, s0, {r}),

where

δ(s0, ε) = {s1
0
 , s2

0
 },

δ(t, ε) = {r} ∪ δ1(t, ε) for all t∈ R1,

δ(t, λ) = δ1(t, λ) for all t∈ S1 and λ∈Σ ,

δ(t, ε) = {r} ∪ δ2(t, ε) for all t∈ R2,

Regular Expressions and Acceptors 65

δ(t, λ) = δ2(t, λ) for all t∈ S2 and λ∈Σ ,

and δ(s, λ) = ∅ in all other cases.
Schematically we can depict this construction of recognizer A by the

diagram below.

s

s r

r

r

s

A

A

A

0
11

0

2

1

22

ε

ε

ε

ε0

It should be clear that the accepting runs in A are just those of A1

together with those of A2 so that L(A) = L(A1) ∪ L(A2) = µ(α1+α2).

Details of this analysis are omitted.
subcase 2: α = α1•α2

A construction analogous to that in the first subcase also applies
here. Below is the schematic depiction of the construction — details
similar to those in the first case are left to the reader.

s s r s r r0 0
1 1

0

2 2

1 2A A

A

ε ε ε

subcase 3: α = (α1)*

Again a construction analogous to that in the first subcase applies
here. Below is the schematic depiction of the construction — details
similar to those in the first case are left to the reader.

66 Formal Models of Computation

A

A

s s r r

1

0 0
1 1ε ε

ε

ε

�

The details of the constructions indicated in Theorem 1.3.2 are subject to
a number of minor variations. In particular, it is not difficult to avoid adding
all the new states indicated in the constructions shown here. This can be of
some benefit if one chooses to mechanically follow the construction outlined
here to transform a regular expression into a recognizer. We have
emphasized clarity here rather than economy. While this analysis effectively
provides an algorithm to translate a regular expression to an ε-NFA, it
suffers from a similar practical difficulty to that noted previously for the
algorithm that converts in the opposite direction. Namely, if one
mechanically follows the indicated procedure, the resulting ε-NFA is
guaranteed to be correct, but in almost all cases the result is a highly non-
optimal recognizer.

Example 1.3.2.
If we mechanically apply the construction of Theorem 1.3.2 to the regular
expression 0*•(0+1), the reader should verify that we obtain the 12 state
acceptor

Regular Expressions and Acceptors 67

0*
0+1

0

0

1

ε
ε

ε

ε

ε

εεε

ε

ε
ε

If we employ a little intuition and insight to merging redundant states,
we can develop a recognizer with only two states.

0

0,1

�

The unification of the regular and the acceptor families of languages
shown by Theorems 1.3.1 and 1.3.2 permits us to collectively affirm all the
properties previously established for either family. Furthermore, by
combining these properties we can uncover further properties that are not
readily apparent using either description method alone.

Corollary 1.3.3: the regular languages are closed under intersection.
Proof:

By Theorem 1.3.2, each regular language is ε-NFA-recognizable. Then
by Theorems 1.2.4 and 1.2.2, it is DFA-recognizable. Hence by Theorem
1.2.1, its complement is DFA-recognizable and hence regular. From
DeMorgan’s laws, for any sets X ∩ Y = ¬(¬X ∪ ¬Y), so from closure under
union and complement we can infer closure under intersection.
�

One additional frequently useful operation on strings is to reverse them
end for end, that is, just write them backwards. This will cause
characteristics not occurring until the end to be present right at the start and
can simplify some processes.

Definition 1.3.1: the reversal of a string x∈Σ *, written xR, is defined

inductively as follows: εR = ε, and for each λ∈Σ and x∈Σ *, (λx)R = xRλ.

68 Formal Models of Computation

Also, for a language L ⊆ Σ*, the language reversal, LR, is the element-wise
application, LR = {xR | x∈ L}.

Thus, for example, (0*1)R = 10* and ((001)*)R = ((001)R)* = (100)*.
And the reversal operation is regularity preserving in general as we show
next.

Theorem 1.3.4: for each regular language L ⊆ Σ*, LR is also regular.
Proof:

By Theorem 1.3.2 we can assume that L = L(A) where A is an ε-NFA
with one final state, say A = (S, Σ, δ, s0, {r}). Then define ε-NFA A' = (S, Σ,

δ', r, {s0}), where for all s∈ S and σ∈Σ ∪ {ε}, δ'(s, σ) = {t | s∈δ (t, σ)}.

Then the idea is that A' just simulates A “running backwards”. That is, there
is a transition from state s to state t in A' exactly when there is a transition
from state t to state s in A. Hence whenever A has a run from s0 to r, A' has

a run from r to s0, and vice-versa. The reader is left to verify the details. But

since this is true, L(A') = LR and so by Theorems 1.2.4, 1.2.2, and 1.3.1 this
result is proven.
�

The construction in the proof of Theorem 1.3.4 graphically reveals the
descriptive power of non-determinism. From Theorems 1.2.2 and 1.2.4, we
know that a DFA for LR must exist. But while the ε-NFA description is
practically immediate, a direct description of the DFA would be highly
challenging to devise and difficult to verify.

While superficially the regular expressions do not appear to describe
“computations”, we have seen in this section that such a view of them is
available just below the surface. The regular expressions provide a
generative orientation to describing languages that is fully equivalent to each
of the models of acceptors that provide a recognition orientation to
languages. Moreover, we have effectively presented algorithms (though not
especially practical ones) for translating from any of the descriptions to any
other. From this point on we are free to use whichever of the descriptive
mechanisms that have been introduced that most readily suits the
circumstances of the moment. The constructions presented in this section
have revealed the strong similarity between Kleene closure in regular

Regular Expressions and Acceptors 69

expressions and cycles in recognizers — nesting of either corresponds to
nesting of the other. Also, language concatenation is analogous to sequential
execution, and union resembles branching, an analogy we will pursue further
in Section 2.4.

Section 1.4: Two-way acceptors‡

In section 2 of this chapter, we investigated several different models of
acceptors. These models allowed us to reproduce formal counterparts for a
variety of computational behaviors, although in the end all the models
yielded the same recognition capacity. One common feature of those models
was that they all provided for unidirectional scanning of the input sequence.
The finite-state character of the memory meant that for inputs of unbounded
(but finite) length, only limited partial information about the previously
scanned subsequence could be retained. One might surmise that the ability to
re-scan past input would provide a means to overcome this limitation and
lead to a model that provides greater recognition capability. In this section
we formalize the exploration of this intuition.

To pursue this idea, our first step is to provide a formal model of an
acceptor that is not bound to process the input sequence in a unidirectional
fashion. We do this by permitting the acceptor to process symbols in either
the forward direction (i.e., left-to-right), or to (re)process symbols in the
reverse direction (right-to-left). Thus any portion of the input sequence can
be processed repeatedly and decisions to re-scan can be based on symbols
which come later in the sequence.

Definition 1.4.1: a two-way deterministic finite acceptor (2W-DFA) A is a
5-tuple, A = (S, Σ, δ, s0, R), where S, Σ, s0, and R are as in a DFA, and the

next-state function δ: S×Σ → S×{L, R}, where L (for left) and R (for right)
are required to be two abstract symbols otherwise not appearing in A.

So if the “next-state” function defines δ(s, λ) = (t, R), when the acceptor
is in state s and scanning the letter λ, it changes to state t and next scans the
input letter immediately to the right of λ in the input sequence — exactly as

‡ This section can be omitted without loss of continuity.

70 Formal Models of Computation

in a DFA. The new idea is that if the “next-state” function defines δ(s, λ) =
(t, L), when the acceptor is in state s and scanning the letter λ, it changes to
state t and next scans the input letter immediately to the left of λ in the input.
Thus there is complete flexibility in the scanning direction to be used at any
point.

Now with 2W-DFAs, extending from these atomic next-state moves to
the transitions on an input sequence becomes more involved than in the one-
way case. The letters that have been previously scanned cannot be eliminated
from further consideration, since they may be re-scanned again later. To
analyze these bi-directional computational behaviors, we introduce some
additional concepts.

Definition 1.4.2: for 2W-DFA A = (S, Σ, δ, s0, R), an instantaneous

description (ID) is a sequence belonging to the set Σ*•S•Σ*.

The idea of an ID xsy (where x,y∈Σ * and s∈ S) is that it provides a
snapshot of all of the information about the computation of the 2W-DFA at a
given moment, namely:

(1) its current state (s),
(2) the entire input sequence (xy), and
(3) the letter currently being scanned (the first letter of y), including the

position in the input.
With this information, we can always determine exactly how the
computation will continue.

Definition 1.4.3: given 2W-DFA A = (S, Σ, δ, s0, R), we say IDs I1 and I2
determine a run step, written I1 |— I2, if I1 = λ1λ2 … λp−1sλp … λn

(1≤p≤n) and
either δ(s, λp) = (t, R), and

I2 = λ1λ2 … λp−1λptλp+1 … λn (λp+1 … λn = ε for p=n),

or p>1, δ(s, λp) = (t, L), and

I2 = λ1λ2 … λp−2tλp−1λp … λn (λ1 … λp−2 = ε for p=2).

IDs I1 and I2 determine a (k-step) run, written I1 |—* I2, if there exist IDs J0,

J1, … , Jk (k≥0) so that I1 = J0, I2 = Jk, and Ii |— Ii+1 (0≤i<k).

Regular Expressions and Acceptors 71

We have defined runs in 2W-DFAs so that when the 2W-DFA moves
right on the rightmost letter of the input, no subsequent run steps are
possible; also a run step moving left when the 2W-DFA is on the leftmost
letter of the input is impossible, and this also terminates a run. Since this
model is deterministic, the next-state function is required to be defined for
all possible combinations, and no blocking on the “interior” of the input
sequence can occur. However, a new computational behavior is now possible
— an infinite loop can occur with the acceptor indefinitely moving back and
forth, first in one direction and then the other.

Since we now have additional computational behaviors, we need to
carefully consider the conditions that we wish to employ in order that a
given input be distinguished as “recognized”.

Definition 1.4.4: for 2W-DFA A = (S, Σ, δ, s0, R), the set of sequences

recognized (or accepted) is L(A) = {x∈Σ * | s0x |—* xt and t∈ R}.

So the criteria we choose is for the acceptor to begin on the leftmost
letter in its start state, move off the right of the input (hence guaranteeing the
input has been scanned in its entirety), and terminate in an accept state.
Other behaviors (i.e., moving off the right in a non-accept state, moving off
the left in any state, or infinite looping) are understood to reject the input.

Observe that an ordinary DFA can be regarded as a special case of a 2W-
DFA that just always moves right. The acceptance criteria for DFAs matches
the criteria adopted here for 2W-DFAs, so all regular sets are immediately
seen as recognized by 2W-DFAs as well. Of course, the original question
was whether this new capability to make “multiple passes” over the input
provides a greater recognition capability. Before proceeding with the answer
to this question, we will consider a couple of examples of 2W-DFAs.

Note that we could still use state diagrams to present examples of 2W-
DFAs by adding the direction of the move to the labels of edges. However,
we do not do this for 2W-DFAs since it tends to be misleading because the
added direction of scan breaks the connection between paths and transitions.
For instance, consider the (partial) state diagram below.

(1,L)
(1,R)

(0,R)

r s t u
(0,R)

72 Formal Models of Computation

It appears that there is a transition from state r to state u. But if we look
more closely at the runs, we find that r011 |— 0s11 |— t011 |— 0s11 |— …
(infinite loop) and, in fact, state u can never be reached! Therefore for 2W-
DFA examples we will use the tabular form of presentation of next-state
functions.

Example 1.4.1
For this 2W-DFA Σ = {0, 1}, and S = {a, b, c} with start state a, and

accepting states {a}. The next-state function is given by the table below.

δ a b c

0 (a,R) (c,R) (c,R)
1 (b,L) (b,L) (a,R)

So this table indicates, for instance, that δ(a, 0) = (a, R), etc. A few
examples of its computations are as follows:

a001 |— 0a01 |— 00a1 |— 0b01 |— 00c0 |— 001a — accept,
a10 |— — halt/reject,
a011 |— 0a11 |— b011 |— 0c11 |— 0a11 |— … — infinite loop/reject.

More generally, we see that any input starting with '1' is rejected, so all
non-null recognized strings must begin with '0'. But not all sequences
starting with '0' are recognized as we've noticed above. For strings of the

form 0+1, we have a0+1 |—* 0+1a, while a0+11 |—* 0+1a1 |—* 0+1a1 —

infinite loop. Hence the recognized language by this 2W-DFA is (0+1)* 0*.
�

The next example provides a more complicated 2W-DFA that further
illustrates how much difficulty the bi-directional scan can add to
understanding the nature of the computations that are described.

Example 1.4.2
For this 2W-DFA S = {0, 1}, and S = {a, b, c, d, e} with start state a, and

accepting states {e}. The next-state function is given by the table below.

δ a b c d e

0 (a,R) (a,R) (d,L) (e,R) (e,R)
1 (b,R) (c,L) (c,L) (c,L) (e,R)

Regular Expressions and Acceptors 73

For this 2W-DFA the input 0011 yields the run:
a0011 |— 0a011 |— 00a11 |— 001b1 |— 00c11 |— 0c011 |— d0011 |—

0e011 |— 00e11 |— 001e1 |— 0011e — accept,
and input 1100 yields the run: a1100 |— 1b100 |— c1100 — reject. What
language is recognized by this 2W-DFA?
�

The following result shows that while adding bi-directional scanning
leads to much more complicated computations, it does not increase
recognition capacity. This was considered quite surprising when first
discovered by Rabin and Scott in an early landmark study [R-S 59], and this
conclusion remains as one of the most difficult claims to justify in finite
automata theory. The basic difficulty is that to simulate a 2-way DFA with a
1-way DFA, while things are obvious for moves to the right, when the 2-way
machine moves left, the 1-way machine can only continue moving right! So
the 1-way DFA must record sufficient information the first time it sees the
input (i.e., have enough states) to enable this. Since perfect recall is
impossible (the length of inputs has no bound, so any finite number of states
will have its capacity exceeded), the question is: what to “remember”? That
depends on what the 2-way DFA is going to look at when it starts moving
left, so the 2-way transitions must be the guide.

Theorem 1.4.1: each language accepted by a 2W-DFA is regular.
Proof:

Our proof of this theorem is a construction. Given a 2W-DFA A = (S, Σ,
δ, s0, R), we define an ordinary DFA A' that recognizes the same language.

To accomplish this we need to determine how to “simulate” the bi-
directional scanning of a 2W-DFA while using a unidirectional scan. This is
apparently impossible, and can only be indirectly accomplished if all the
information that A will ever extract on its potentially unlimited number of
passes over an input can be extracted and stored in finite state memory
during a single scan of the input. This is the strategy of the construction
developed here.

The first step in this construction is to determine a set that will suffice for
the states of A'. The set used here is motivated by the following
observations. Suppose that we are considering an input xλ, and A' has
successfully simulated A's computation on x and then encounters λ∈Σ . If A

74 Formal Models of Computation

moves right on λ, then A' can directly simulate this. But if A moves left
when reading λ, then the unidirectional nature of A' requires it to keep
moving right! Since A moves left onto x, the DFA A' can only indirectly
simulate this by “forecasting” A’s behavior and directly proceeding as A
eventually will! The transition to make in the xλ computation requires A' to
have knowledge of what A does when it is started in a given state on the
rightmost letter of x!

We are going to record the necessary knowledge about computations of

A on inputs x∈Σ * in the form of functions that supply the critical
information when given a suitable argument. To this end we first introduce a

new abstract symbol, say θ, where θ∉ S. With each x∈Σ *, we associate
function δx: S ∪ {θ} → S ∪ {θ} defined by the following:

(a) for s∈ S

δx(s) =

 t -- if x=yλ with λ∈Σ and ysλ |—* yλt

 θ -- otherwise

(b)

δx(θ) =

 t -- if s0x |—* xt

 θ -- otherwise

The information about the behavior of A on input x that is “recorded” in
function δx should be carefully noted. The symbol θ is just an added abstract

symbol — we need one more than there are states in the 2W-DFA. It plays
two roles in the function descriptions. As a function result, it denotes that the
corresponding run of the 2W-DFA is “unproductive” (i.e., never gets the
machine back to the symbol at the right of where it started). As a function
argument, it gives one more place to “hang” needed information, namely, for
runs that start on the leftmost (instead of rightmost) symbol in the start state
(instead of a parameter state), what state they end in off the right (or θ if
unproductive). When A is started on the rightmost letter of x in state s, δx(s)

= θ denotes that A never moves back off the right of x (A may move off the

Regular Expressions and Acceptors 75

left of x, or may loop on x); δx(s) = t denotes that A does move off the right

of x and is in state t when this happens. When A is started on the leftmost
symbol of x in state s0, δx(θ) = θ denotes that A never moves off the right of

x; δx(θ) = t denotes that A does move off the right of x and is in state t when

this happens. Also note that with these definitions δε(s) = θ for all states s

(since ε has no rightmost symbol), and δε(θ) = s0 (since A has a run off the

right with zero steps).

While there are infinitely many sequences x∈Σ *, there are only finitely
many different functions δx. This is true since a function is determined by

the result it yields for each argument, and there are finitely many possible
outcomes in S ∪ {θ} for each of the finitely many arguments in S ∪ {θ}.
Again we take advantage of the abstractness of our models that permit any
finite set to serve as states, and it is this finite collection of functions that we

take for the state set of the DFA A', namely S' = {δx | x∈Σ *}. Particularly

notice that the functions themselves are quite distinct from their “names” in

Σ*. That is, two different sequences x,y∈Σ * may “name” the same function
(i.e., δx= δy), so that these functions have possibly infinitely many “aliases”.

Indeed, the fact that Σ* is infinite, and the number of different functions is
finite, guarantees the existence of such cases.

Now we can provide the definition of the DFA. We take A' = (S', Σ, δ',
δε, R'), where R' = {δx | δx(θ)∈ R}, and δ'(δx, λ) = δxλ.

By definition x∈ L(A') if and only if δ'(δε, x) = δεx = δx∈ R'. But δx∈ R'

if and only if δx(θ)∈ R, and δx(θ)∈ R if and only if x∈ L(A). Therefore L(A')

= L(A).

Our proof is complete, except for one rather subtle, but very significant,
gap. In the definition of the next-state function of A', δ'(δx, λ) = δxλ, we

have relied on an unspecified choice x among the many potential aliases for
the function δx. But this next-state must be a single well determined function

— it can’t vary with different choices of alias. This leaves a question of

76 Formal Models of Computation

whether we have a coherent definition for δ' since if δx= δy, we could just as

well say that δ'(δx, λ) = δ'(δy, λ) = δyλ, a possibly different outcome. So to

complete our proof, we need to show that the outcome is uniquely
determined by the function that constitutes the state, independent of the alias
that happens to be used to name it. In providing this justification, we will
essentially be verifying that the state set we have selected incorporates
enough information about the bi-directional scanning done by A to allow A'
to accomplish the same recognition with only a unidirectional scan!

Claim: for each x,y∈Σ *, if δx= δy, then for all λ∈Σ, δxλ= δyλ.
Proof of claim:
case 1: assume either x or y is ε, say δε=δy

We show in this case that y=ε by contradiction. Suppose y=y'λ where

λ∈Σ . Now δε= δy so δy(θ)= δε(θ)= s0 as noted above. Therefore s0y'λ |—*

y'λs0. But now consider the last step of this run, say s0y'λ |—* y'tλ |—
y'λs0 for some state t. But then δy(t)= s0, while δε(t)= θ. But this

contradicts δε= δy and hence we must have y= ε= x and so δxλ= δλ= δyλ
and the claim is proven for case 1.

case 2: assume that x≠ε≠y and δx= δy
subcase A: consider δxλ(s) and δyλ(s) where s∈ S

subcase i: δ(s, λ)= (t,)
Then δxλ(s) = δyλ(s) = t

subcase ii: δ(s, λ)= (t,)
Since neither x nor y are null, we have that x=x'λ1 and y=y'λ2 for

some λ1,λ2∈Σ . Then consider the two runs xsλ |— x'tλ1λ and ysλ |—
y'tλ2λ. Since δx= dy, either

subcase a: δx(t) = δy(t) = θ
Then these runs fail to move off the right of x'λ1 and y'λ2,

respectively. Therefore the same is true of the runs starting from xsλ
and ysλ and so δxλ(s) = δyλ(s) = θ.

or

Regular Expressions and Acceptors 77

subcase b: there is s1∈ S with δx(t) = δy(t) = s1

Thus in this case the two runs continue, respectively, as xsλ |
x'tλ1λ |—* xs1λ, and ysλ |— y'tλ2λ |—* y1s1λ. Therefore δxλ(s) =

δxλ(s1) and δyλ(s) = δyλ(s1). Now we again apply subcase A analysis

to s1, and again will be led to options (i) or (ii). If option (i) applies,

then δxλ(s1) = δyλ(s1) and hence δxλ(s) = δyλ(s) and subcase A is

concluded. Also by option (iia) we reach the same conclusion. By
option (iib) we obtain still another state, say s2, so that δxλ(s) =

δxλ(s1) = δxλ(s2), and δyλ(s) = δyλ(s1) = δyλ(s2). Continued

repetition of this analysis eventually either leads to the conclusion
that the two results in subcase A are the same, or to an unending
series of states s, s1, s2, s3, … for which the analysis must be
repeated. But in this latter circumstance, since there are finitely
many states, there must at some point be a duplication of state, say
sm= sn. But once a repetition occurs, it must be repeated

indefinitely, and this shows that both runs enter an infinite loop and
so δxλ(s) = θ = δyλ(s).

Therefore subcase A is complete.
subcase B: consider δxλ(θ) and δyλ(θ) [and case 2 assumptions still apply]

subcase i: δx(θ) = δy(θ) = θ
In this case neither of the runs starting s0x nor s0y will move off the

right of the input. But then neither will the runs s0xλ or s0yλ, and

therefore δxλ(θ) = δyλ(θ) = θ.

subcase ii: δx(θ) = δy(θ) = s

Then s0xλ |—* xsλ and s0yλ |—* ysλ, and so δxλ(θ) = δyλ(s) and δyλ(θ)

= δyλ(s), and this immediately reduces to subcase A.

Thus we have shown that for every possible argument to δxλ and δyλ, we

obtain the same result provided that δx = δy and so δxλ = δyλ This completes

the proof of our claim, and the proof of Theorem 1.4.1.
�

78 Formal Models of Computation

The construction in this theorem is an excellent illustration of time/space
trade-off possibilities in computing. Our construction here shows that an N
state 2W-DFA which may require a significant amount of additional time
doing its bi-directional scan of the input can always be replaced by a device
using a single pass over the input. However, to achieve this one-pass time
efficiency, the DFA (at least in our construction) may be required to have
(N+1)N+1 states! This latter is the worst-case bound determined by noting
that the states in our DFA are functions with N+1 arguments, each of which
could be associated with one of N+1 possible results.

Example 1.4.3.
We illustrate the construction in the proof of Theorem 1.4.1 by applying

it to the 2W-DFA of Example 1.4.1. The first step is to develop the state set
for the DFA. As we have noted a few times previously, we do not
necessarily need all the 44 = 256 states predicted by this construction. We
only need those states reachable from the start state δε, and the construction

proceeds state-by-state from this starting point. When all reachable states
have been constructed, the process will be complete. The details are quite
tedious, and it may be help to look ahead from time to time at the completed
DFA which is depicted at the end of the example.

Each of the functions δx will be a function on the set {a, b, c, θ}. We

will write these functions as 2×4 arrays whose top row lists the arguments,
and whose bottom row lists the result the function yields for the
corresponding argument. For instance, in the proof of Theorem 1.4.1 it was
observed that for the null string we have δε(a) = δε(b) = δε(c) = θ, and δε(θ)

= a. So for function δε we will write δε =

a b c θ

θ θ θ a .

Now from the run analysis
a0 |— 0a,
b0 |— 0c,
c0 |— 0c,

we have that δ0 =

a b c θ

a c c a . And from

a1 |— off left,
b1 |— off left,

Regular Expressions and Acceptors 79

c1 |— 1a,

we have that δ1 =

a b c θ

θ θ a θ .

Then for δ00 we investigate the runs

0a0 |— 00a
0b0 |— 00c,
0c0 |— 00c,
a00 |— 0a0 |— 00a,

and therefore δ00 = δ0.

By similar analysis we find that δ11 = δ1, and

δ01 =

a b c θ

a a a a , and δ10 =

a b c θ

a c c θ .

Some effort on the direct computation of the functions can be avoided by
noting equivalencies that have already been determined. For instance, in the
DFA δ000 = δ'(δε,000) = δ'(δ00, 0) =δ'(δ0, 0) = δ00 = δ0. Hence δ000 = δ00 =

δ0, and δ001 = δ01. We illustrate the determination of the δx functions for

one more case. With x=011 we have the runs
01a1 |— 0b11 |— b011 |— 0c11 |— 01a1 |— 0b11 |— … infinite loop,
01b1 |— 0b11 |— … infinite loop,
01c1 |— 011a,
a011 |— 0a11 |— b011 |— … infinite loop,

and therefore δ011 = δ1. Similarly we find that δ010 = δ0, δ100 = δ10, δ110 =

δ10, δ111 = δ1, and δ101 =

a b c θ

a a a θ . Finally, it can be determined that δ1010 =

δ10 and δ1011 = δ1. A summary of the distinct (reachable) functions, and

their transitions, is shown in the DFA state diagram below.

80 Formal Models of Computation

1

1

0 0

1

1
0

0

1

0
1

0

0 01 101

101
δ δ δ

δδδ

ε

Notice that the language recognized by this DFA is the same as that
noted for the 2W-DFA we started from, but is accomplished with a
unidirectional scan.
�

Since Theorem 1.4.1 identifies the 2W-DFA recognized languages with
the regular languages, we have no need for separate investigation of their
properties. It might be asked if anything is gained by providing for non-
determinism or ε-moves in the two-way case. It turns out that these features
fail to increase recognition power in this case as well. Other computational
behaviors have also been studied. For instance, providing one-way scanning
plus the ability to “rewind” the input to the beginning, and still exactly the
regular sets are recognized. The interested reader can consult [Per 90] for
broader developments.

Section 1.5: Summary

The regular expressions provide an initial, machine independent means of
precisely describing collections of sequences — that is, languages. The
general construction of strings in a collection is reflected in its regular
expression, and a number of properties of the languages that are so described
can be readily determined by an examination of this description. However,
some properties are not so evident from such a description, including such
basic processing problems as deciding if a candidate string belongs to the
intended collection or not. The idea of a mechanical processing agent (DFA)
that places each string in one of two categories is next introduced. Despite its

Regular Expressions and Acceptors 81

orientation to recognition rather than generation, the DFA (plus several
significant variations) are found to be equivalent to the regular expression
mechanism. In terms of understanding the limits of this basic model of
computation, in this chapter we have taken the positive view and explored
alternative means of expressing what is possible.

The availability of contrasting mechanisms permits the determination of
many properties of the resulting family of regular languages. In addition to
aiding the discovery of these properties, this development of contrasting but
equivalent mechanisms establishes a pattern of analysis that will be
continued, and extended, throughout the remainder of this book. Finally,
while we have eschewed the development of explicit algorithms to resolve
various processing problems, it is important to recognize that the basis for
such algorithms has been established. The existence (or non-existence) of
algorithms that can resolve various questions of interest is another theme that
will receive increasing consideration as our investigations unfold.

Exercises.

1.1. Show that language concatenation is an associative operation.

1.2. Show that language concatenation distributes over set union (from either
side).

1.3. Provide a regular expression and justify its correctness for each of the
following languages over Σ = {0, 1}:
(a) all sequences with the same second and next-to-last letter
(b) all sequences whose first and last letter are different
(c) all sequences of even length
(d) all sequences with three or more '1's
(e)¤ all sequences with an odd number of '1's
(f) all sequences with no two successive symbols the same
(g) all sequences with no two successive '0's

(h)* all sequences of even length with an odd number of '1's
(i) all sequences of two or more characters whose next-to-last character

is 0
(j) all sequences not in µ((0*1)*)

82 Formal Models of Computation

(k)¤ all sequences that do not contain 01 as a subsequence

1.4¤. For Σ={1,2}, provide a regular expression that describes the strings x =
λ1λ2 … λk, (λi∈Σ ,1≤i≤k) so that λ1+λ2+ … +λk is a multiple of 3 (λi is
regarded as an integer in this summation, not a letter). Fully justify your
answer.

1.5. Prove each of the following parts of Theorem 1.1.1
(a) part xi
(b) part xii
(c) part xiv

1.6. How do we know that the positive closure(+) of a regular language is
regular?

1.7. For Σ = {a,b} prove or disprove µ(a(a+b)*) = µ((ab*)*ab*).

1.8. Prove or disprove whether the following are valid identities for all
regular expressions α and β
(a) (α* β*)* ≡ (α* β)*

(b) (α* β)* ≡ ε + (α+β)* β

1.9. Prove Lemma 1.1.2.

1.10. Show that if α is a regular expression with the property that ε∈µ (α),
and whenever β1 and β2 are regular expressions so that µ(β1) ⊆ µ(α)

and µ(β2) ⊆ µ(α), then µ(β1•β2) ⊆ µ(α), then there is a regular

expression γ so that α ≡ γ*.

1.11. Describe and justify a series of analysis steps (i.e., an algorithm) that
given any regular expression α, determines whether or not ε∈µ (α).

1.12. The composition of two substitutions, σ1 and σ2, σ1°σ2 is defined by

[σ1°σ2](λ) = σ2(σ1(λ)) for each λ∈Σ , and this clearly determines

Regular Expressions and Acceptors 83

another substitution. Show that the composition of two regular
substitutions is another regular substitution.

1.13. For substitutions σ, σ1, and σ2 we can define new substitutions as
follows:
• the union of two substitutions [σ1∪ σ2](λ) = σ1(λ) ∪ σ2(λ) for each

λ∈Σ ,
• the concatenation of two substitutions [σ1•σ2](λ) = σ1(λ)•σ2(λ) for

each λ∈Σ ,

• the star of a substitution [σ*](λ) = (σ(λ))* for each λ∈Σ .
Show that every regular substitution can be obtained from finite
substitutions (i.e., those such that σ(λ) is a finite language for each λ∈Σ)
by finitely many applications of substitution union, concatenation, and
star.

1.14. Prove that the language of Example 1.2.8 is (1+01)* (ε+0).

1.15. Provide an acceptor for each of the languages in Exercise 1.3 and
justify your answers.

1.16. Construct a DFA over Σ = {0,1} which accepts exactly those sequences
which end with 00. Provide convincing justification that your DFA is
correct.

1.17. Provide a DFA that recognizes the complement of 0*1* and justify its
correctness.

1.18. Provide a DFA over Σ={0,1} which accepts exactly those strings that
have both 01 and 10 as (possibly overlapping) substrings, in either order.
Give convincing justification that your solution accepts all such strings
and no others.

1.19. Determine whether or not the regular expression ((0+1)0*1)* (0+1)
describes exactly the language accepted by the DFA below and justify
your answer.

84 Formal Models of Computation

q q q0,1 0

1

0
1

0 1 2

1.20¤. Determine whether or not the regular expression 0 (00)* +

(1+01+001)* 0 and the DFA in the state diagram below are equivalent,
and prove your answer.

0

1

1

1

0

0

1 2

3

1.21. Prove that for a DFA λ∈Σ , x,y∈Σ *, and s∈ S,

(a) δ*(s, λx) = δ*(δ(s,λ) ,x),

(b) δ*(s, xy) = δ*(δ*(s,x), y).

1.22. What is the smallest DFA that recognizes µ(0*+1*)?

1.23. Construct a regular expression that defines the same language as the
acceptor given below (start =1, final={2,3}). Justify your answer.

δ a b

1 1 2
2 3 3
3 3 1

1.24. Show whether or not the regular expression 0(01)*0(0+01)* and the
DFA with start state =1 and final states = {6} defined by the transition
function below describe the same language.

Regular Expressions and Acceptors 85

δ 0 1
1 2 7
2 3 7
3 4 2
4 5 6
5 7 6
6 7 6
7 7 7

1.25. Show that if a DFA accepts any strings at all, then it accepts some
string whose length is less than the number of states.

1.26. Show that for regular languages R1 and R2, there is a single transition

system that by choice of the accepting states yields a DFA recognizing

each of the languages: R1, R2, R1∪ R2, R1∩R2, ¬ R1, and ¬ R2.

1.27. Let Σ = {0, 1} and define a DFA A over Σ with L(A) = {0101} (i.e., A
accepts just this one string). Is there a simpler NFA accepting this
language? Justify your answers.

1.28¤. Consider the NFA in the state diagram below.

1 1

0
0

0

a b c

(a) Give a string beginning with '0' that is not accepted.
(b) Produce an equivalent DFA using the power set construction

showing start and final states, and clearly indicating which subset of
{a,b,c} is represented by each state. Omit states that are unreachable
from the start state.

1.29. Use the powerset construction (see proof of Theorem 1.2.2) to obtain a
DFA that accepts the same language as the NFA given below. You need
only exhibit the states which are reachable from the start state (rather

than all 24 = 16 states).

86 Formal Models of Computation

A B C D
1 0 1

0,1

1.30¤. With Σ = {0,1}, construct an acceptor (DFA, NFA or ε-NFA) that
recognizes exactly those strings that have either 101 or 0110 (or both) as

substrings (i.e., L = (0+1)* (101+0110) (0+1)*). Clearly explain the
correct operation of your acceptor.

1.31. Provide an ε-NFA that accepts the language (01+001+010)*. Give
convincing justification that your solution accepts all such strings and no
others.

1.32. Provide a DFA for the language of Exercise 1.32 and give convincing
justification that your solution accepts all such strings and no others.

1.33. Construct ε-NFAs recognizing each of the languages in Example 1.1.3.

1.34. Construct a DFA equivalent to the NFA in Example 1.2.4.

1.35. Show that for an ε-NFA, ε-closure(S∪ T) = ε-closeure(S) ∪ ε-
closure(T).

1.36. Show that for an ε-NFA, ε-closure(ε-closure(T)) = ε-closure(T) for
each subset T of states.

1.37. Provide a proof of Lemma 1.2.3.

1.38. For Σ={0,1}, consider the set of all sequences of Σ* which have an odd
number of '0's and which do not end with '00'. Devise both a regular
expression and an ε-NFA (or NFA or DFA) which accept this language,
and show that they are both correct.

1.39. We define a new variety of acceptor in this problem, called a meta-
NFA. A meta-NFA is just like an ε-NFA except that the transitions in a
meta-NFA over alphabet Σ are described by regular expressions rather

Regular Expressions and Acceptors 87

than single letters. Since either ε, ∅ or any single letter of Σ is a regular
expression, meta-NFA can be regarded as generalizations of ε-NFA. In a
run of a given input sequence, state transitions are associated with
reading an initial segment of the remaining input that is described by the
regular expression for that transition. For example, depicted below is a

simple meta-NFA that accepts 0*1 (and has no cycles). Clearly every ε-
NFA is a meta-NFA, but are meta-NFA equivalent to ε-NFA?

0* 1

1.40. Prove that if a state of a transition system is reachable from another,
then it is reachable using an input sequence of length N-1 or less, where
the transition system has N states.

1.41. Show that if A is a strongly connected DFA, then either L(A) is empty
or L(A) is infinite.

1.42. A congruence on a DFA A is an equivalence relation ρ on the state set
such that for any two states s, s', if s ρ s', then δ(s, λ) ρ δ(s', λ) for all
λ∈Σ . Show that if A is a DFA with no non-trivial congruences (there are
two trivial congruences — one with all states in one class, and the other
with each state in a separate class), then either
(i) A has two states, or
(ii) A has at most one state that is not a generator.

1.43. A DFA is a permutation machine if for each λ∈Σ , the next-state
mapping is a permutation of the states. Show that if A is a permutation
machine that has a generator state, then A is strongly connected.

1.44. A DFA is nilpotent if there exists a natural number N and a state r so

that for all x∈Σ * with len(x) ≥ N, and all states s, δ(s,x) = r. Show that L

⊆ Σ * is either finite or co-finite (i.e., its complement is finite) if and only
if L is accepted by a nilpotent DFA.

88 Formal Models of Computation

1.45. Provide an equivalent regular expression, and justification of its
equivalence, for the acceptor in
(a) Example 1.3.1
(b) Example 1.2.2
(c) Example 1.2.3 (A1)

(d) Example 1.2.3 (A2)

(e) Example 1.2.3 (A3)

(f) Example 1.2.4
(g) Example 1.2.5
(h) Example 1.2.8 (A)

1.46. Show that for each X,Y ⊆ Σ* the reversal operation has the following
properties
(a) (X ∪ Y)R = XR ∪ YR

(b) (X•Y)R = YR • XR

(c) (X*)R = (XR)*

1.47. Show that if L⊆Σ * is regular, and λ∈Σ , then the language obtained
from L by removing all occurrences of λ from strings of L is also
regular.

1.48. For h: Σ* → Σ* define Fixed(h) = {x∈Σ * | h(x) = x}. Show that if h is

a homomorphism, there is a finite set F so that F* = Fixed(h).

1.49*. A (single) infinite sequence λ1λ2 … λn … with λi from a (finite)
alphabet Σ is regular if there are only finitely many (their number is
called the index) distinct infinite subsequences among all its postfixes,
λkλk+1λk+2 … (k≥1). So for example (with Σ={a,b}), the infinite
sequence λ1λ2λ3 … , where

• λi=a for all i (i.e., a∞ = aa … a …), is regular with index 1;

• λi=a for i odd, and λi=b for i even (i.e., (ab) ∞ = abab … ab …), is
regular with index 2; and

• λi=b if i=n+n*(n+1)/2 for some n≥1, and λi=a otherwise (i.e.,
abaabaaabaaaab …), is not regular (why not?).

Regular Expressions and Acceptors 89

Show that for a regular infinite sequence, σ = λ1λ2 … λn … , the
(infinite) language consisting of all its finite prefixes, Lσ = {λ1λ2 … λk |
k≥0}, is a regular set of (finite) sequences.

1.50*. For 2W-DFA A, define loop(A) = {x∈Σ * | s0x initiates an infinite
run}. Is loop(A) necessarily regular? Justify your answer.

1.51*. Consider the family of alphabets Σn = {¢, a1, a2, … , an} with n+1

symbols (n≥1). Define the languages Ln = {¢x | x∈ (Σn − ¢)* and x has at

least one occurrence of each ak, 1≤k≤n}, one over each alphabet Σn

(n≥1). Devise a 2n+2 state 2-way DFA to accept Ln. How many states
do you require for an ordinary DFA? Justify your answers, and contrast
the difference for, say, n=10.

25

