Fall 2005 22C:111

Homework 7 Solution

Problem 1:

(a)birth(_,_, X,_, (M,D,_)), birth(_,_, Y,_, (M,D,_)), X\=Y.

(c) parentOf(Child,Parent), birth(_,_Child,_,(Mon,_,_)), birth(_,_, Parent,_, (Mon,_,_)).
(a)

X = kathleen_Kennedy
$M=2$

D $=20$

Y = jean_Kennedy ;
$\mathrm{X}=$ jean_Kennedy
$M=2$
D $=20$

Y = kathleen_Kennedy ;

X = kathleen_Kennedy2
$M=7$

D $=4$

Y = christopher_Kennedy ;
X = michael_Kennedy
$M=2$

```
D = 27
Y = kara_Kennedy ;
X = christopher_Kennedy
M = 7
D = 4
Y = kathleen_Kennedy2 ;
X = matthew_Kennedy
M = 1
D = 11
Y = mariah_Cuomo ;
X = matthew_Kennedy
M = 1
D = 11
Y = cara_Cuomo ;
X = kara_Kennedy
M = 2
D = 27
Y = michael_Kennedy ;
X = tatiana_Schlossberg
M=5
D = 5
Y = katherine_Schwarzenegger ;
X = katherine_Schwarzenegger
```

```
M = 5
D = 5
Y = tatiana_Schlossberg ;
X = mariah_Cuomo
M = 1
D = 11
Y = matthew_Kennedy ;
X = mariah_Cuomo
M = 1
D = 11
Y = cara_Cuomo ;
X = cara_Cuomo
M = 1
D = 11
Y = matthew_Kennedy ;
X = cara_Cuomo
M = 1
D = 11
Y = mariah_Cuomo ;
No
(b)
?-birth(F,M,X1,_,(Mon,D,Y)), birth(F,M,X2,_,(Mon,D,Y)), X1\=X2.
F = andrew_Cuomo
```

```
M = kerry_Kennedy
X1 = mariah_Cuomo
Mon = 1
D = 11
Y = 1995
X2 = cara_Cuomo ;
F = andrew_Cuomo
M = kerry_Kennedy
X1 = cara_Cuomo
Mon = 1
D = 11
Y = 1995
X2 = mariah_Cuomo ;
No
(c)
?-parentOf(Child,Parent), birth(_,_,Child,_,(Mon,_,_)),
birth(_,_,Parent,_,(Mon,_,_)).
Child = kara_Kennedy
Parent = edward_Kennedy
Mon = 2;
No
```


Problem 2:

The definitions of the two predicates added into file 'familial' is:

```
%solution to problem 2(a)
%motherInLawOf(Person, MotherInLaw)- the dictionary definition of
%mother-in-law is the mother of a spouse
motherInLawOf(Per, M) :-
    (marriage(Per, SP, _); marriage(SP, Per, _)), motherOf(SP, M).
%solution to problem 2(b)
%ancestorOf(Person, Ancestor)- - succeeds when one of Person's
%ancestors (i.e., a person from whom he/she is
%descended, a forebear) is Ancestor.
ancestorOf(Per, A) :- parentOf(Per,A).
ancestorOf(Per, A) :- parentOf(Per,B), ancestorOf(B, A).
```


Problem 3:

```
Two alternative ways to define the predicate are provided in the following. DEFINITION(A)
\%solution to 22C:111 Fall 2005 Homework7, problem 3
\% add a counter to memorize number of ( not matched so far. balanced(X) :- balanced2(X,0).
\%if (, increment the counter, check the rest of the ascii code list balanced2([40|XS], N) :- N2 is N+1, balanced2(XS, N2).
\(\%\) if ), decrement the counter, check the rest of the ascii code list \%if there is no ( unmatched, then the string is not matched. balanced2([41|XS], N) :- N>0, N2 is N-1, balanced2(XS, N2).
\%if the first char is not ( or ), just skip it. balanced2([X|XS], N) :- X=\=40,
\(X=\backslash=41\),
balanced2(XS, N).
\%empty string is balanced.
balanced2([], 0).
```


DEFINITION(B)

\% Test a string for balanced parens balanced("").
balanced ([Z|Zs]) :- $\mathrm{Z} \backslash==40, \mathrm{Z} \backslash==41$, balanced $(\mathrm{Zs}) . \quad \%$ ignore leading non-(\&)
\% otherwise a balanced string Zs must have the structure
\% |------- Zs -------|
\% | (------------------ |
$\% \quad|--X s \quad--|--Y s--|$
$\%$ i.e., $\mathrm{Zs}=[(]++\mathrm{Xs}++[)]++\mathrm{Ys}$ (in Haskell notation)
\% where Xs and Ys are each balanced (and shorter than Zs).
\% A string Zs can be split in this fashion by an application \% of append as follows:
balanced([40|Zs]) :- append(Xs, [41|Ys], Zs), balanced(Xs), balanced (Ys).

