Homework 10 sample solutions

Problem 1

(a) $x-y+1 \quad--$ this is greater than 0 when $x \geq y$
(b) $1-x^{*} x \quad--$ this is greater than 0 only when $x=0$
(c) $x^{*} x \quad--$ this is greater than 0 whenever $x \neq 0$

Executable versions of solutions for problems $2 \& 3$ are in the class directory.

Problem 4.

Step 1: discover the loop invariant
The loop invariant in conjunction with the negation of the loop guard must imply the postcondition. So the "difference" between these conditions is a general guide for what is needed for the loop invariant. In this case the loop invariant $\equiv n>(\text { sqrt-1 })^{2}$.

Step 2: prove invariant true at first arrival -- $\{n \geq 1\}$ sqrt:= 1 \{loop invariant\}
by the Axiom of assignment
$\{n>0$ \}
sqrt:= 1
$\left\{n>\left(\right.\right.$ sqrt-1) $\left.{ }^{2}\right\}$
Step 3: prove this assertion is "invariant" -- still true after the execution of the loop body, given the loop guard.
3A. by the Axiom of Assignment

$$
\begin{aligned}
& \left\{n>\text { sqrt }^{2}\right\} \\
& \text { sqrt: sqrt+1 } \\
& \left\{n>(\text { sqrt-1 })^{2}\right\}
\end{aligned}
$$

3B. by Strengthening the pre-condition in Step 3A, Step 3 is proven since $n>\operatorname{sqrt}^{2} \wedge n>(\text { sqrt-1 })^{2} \square n>$ sqrt 2

Step 4: prove the While post-condition

by the While rule on Step 3
\{loop invariant\}
while n -sqrt*sqrt do
sqrt:= sqrt+1
od
\{ loop invariant $\wedge n \leq s q r t^{2}$ \}
Step 5: prove the program
by the Sequential execution rule on Steps 2 and 4, at the conclusion of the program the post-condition $\left\{\right.$ loop invariant $\left.\wedge n \leq s q r t^{2}\right\}=\left\{n>(\text { sqrt-1 })^{2} \wedge n \leq s q r t{ }^{2}\right\}$ is proven.

